Valon ja aineen vuorovaikutus auttaa OLED-näyttöjä

OLED-näytön osa. Kuva: Mikael Nyberg ja Manish Kumar
OLED-näytön osa. Kuva: Mikael Nyberg ja Manish Kumar

Tutkijat kehittivät teoreettisia menetelmiä OLED-teknologian tehokkuuden parantamiseksi hyödyntämällä valon ja aineen hybriditiloja. Käytännön sovellukset vaativat vielä uusia materiaaleja ja jatkokehitystä, mutta tutkimus tarjoaa lupaavan suunnan OLED-teknologian kehitykselle. 

Turun yliopiston tiedote kertoo, että OLED-näyttöjen kirkkautta voidaan merkittävästi parantaa valon ja aineen vuorovaikutuksen paremmalla ymmärtämisellä.

OLED-teknologia, eli orgaanisia valoa säteileviä diodeja käyttävä tekniikka on yleistynyt valonlähteenä erilaisissa korkealaatuisissa näyttölaitteissa, kuten älypuhelimissa, kannettavissa tietokoneissa, televisioissa tai älykelloissa.

Fluoresoivat OLEDit ovat mullistaneet näyttölaitteiden teknologiaa joustavuutensa, keveytensä ja ympäristöystävällisyytensä ansiosta. 

Teknologian heikkoutena on kuitenkin alhainen hyötysuhde: fluoresoivissa OLEDeissa vain 25 prosenttia sähköenergiasta muuntuu tehokkaasti ja nopeasti valoksi. OLED-näyttöjen kirkkaus on yleensä myös muita valaistusteknologioita heikompi.

Turun yliopiston ja yhdysvaltalaisen Cornellin yliopiston tutkijat ovat nyt ehdottaneet ennakoivaa mallia tämän ongelman ratkaisemiseksi.

OLEDit ovat elektronisia komponentteja, jotka valmistetaan orgaanisista hiilipohjaisista yhdisteistä ja jotka tuottavat valoa, kun niihin johdetaan sähkövirtaa. Toisin kuin perinteisissä LCD-näytöissä, OLED-näytöissä jokainen pikseli säteilee itse valoa ilman erillistä taustavalaistusta.

Kun OLEDeissa käytetyt orgaaniset valoa säteilevät molekyylit asetetaan kahden puoliläpäisevän peilin väliin, ne voivat alkaa vuorovaikuttaa valon kanssa. Tämä vuorovaikutus voi luoda uudenlaisia hybriditiloja, eli uusia hiukkasia, joita kutsutaan polaritoneiksi.

Tuoreessa tutkimuksessa havaittiin, että oikeanlaisella säätelyllä voidaan löytää ihanteellinen piste, jossa pimeät tilat, 75 % kaikista tiloista, alkavatkin muuttua kirkkaiksi polaritoneiksi. Tämä voisi parantaa näyttöjen kirkkautta ja energiatehokkuutta huomattavasti.

"Vaikka yleinen ajatus polaritonien hyödyntämisestä OLED-teknologiassa ei ole täysin uusi, ennustava teoria suorituskyvyn vaihtelusta on puuttunut", kertoo apulaisprofessori Konstantinos Daskalakis Turun yliopistosta.

"Tässä työssä tarkastelimme tarkkaan, missä polaritoni saavuttaa ihanteellisen pisteensä eri skenaarioissa. Havaitsimme, että polaritonien vaikutus riippuu kytkettyjen molekyylien lukumäärästä. Mitä vähemmän molekyylejä, sitä suurempi vaikutus on."

"Esimerkkimolekyyleillä ja vain yhdellä kytketyllä molekyylillä hyötysuhde parani merkittävästi", jatkaa tutkijatohtori Olli Siltanen

"Parhaimmillaan polaritonit kiihdyttivät pimeiden tilojen konversiota jopa 10 miljoonaa kertaa nopeammaksi." 

Kun ilmiötä tutkittiin samanaikaisesti suurella määrällä molekyylejä, polaritoninen vaikutus oli vähäinen. Siksi nykyisten OLED-laitteiden valontuottotehokkuutta ei voida parantaa yksinkertaisesti varustamalla ne peileillä.

Tutkimuksessa saatu teoreettinen tieto on lupaava, mutta sen soveltaminen käytäntöön vaatii vielä jatkokehitystä.

"Seuraava haaste on kehittää teknologiaa, joka mahdollistaisi yksittäisten molekyylien vahvan kytkennän, tai luoda uusia molekyylejä, jotka on räätälöity polaritoneja hyödyntäviin OLEDeihin", selittää Daskalakis.

"Molemmat lähestymistavat vaativat merkittäviä teknisiä ratkaisuja, mutta onnistuessaan ne voisivat parantaa OLED-näyttöjen hyötysuhdetta ja kirkkautta huomattavasti."

OLED-laitteiden laajamittaisempaa käyttöönottoa ovat hidastaneet niiden alhainen energiatehokkuus ja rajallinen kirkkaus, etenkin verrattuna perinteisiin LED-laitteisiin. Tämä tutkimus voi kuitenkin tarjota perustan uuden sukupolven OLED-laitteille, jotka ovat entistä tehokkaampia ja pystyvät saavuttamaan aiemmin mahdottomana pidetyn suorituskyvyn.

Tulokset on julkaistu Advanced Optical Materials -lehdessä.

*

Juttu on Turun yliopiston tiedote lähes sellaisenaan, Tiedetuubin toimituksen tarkastamana.

Käynti Shuji Nakamuran laboratoriossa

Käynti Shuji Nakamuran laboratoriossa
09.10.2014

Vierailimme vuonna 2010 Kaliforniassa, Santa Barbarassa, pikaisesti tuoreen nobelistin Shuji Nakamuran laboratoriossa osana Millennium-palkinnonsaajista kertovaa hanketta. Nakamura voitti palkinnon vuonna 2006 ja kertoo tällä videolla työstään ja ajatuksistaan siitä, mihin LED-valo on menossa.

Fysiikan ja kemian Nobel-palkinnot 2014

Eilen julkistettiin fysiikan Nobel, tänään oli vuorossa kemianpalkinto: arvostetut palkinnot annettiin Led-valolle ja fluoresenssimikroskopialle.

Fysiikan Nobel-palkinto meni kolmelle japanilaiselle, Isamu Akasakille, Hiroshi Amanolle ja Shuji Nakamuralle. Virallisen tiedotteen mukaan palkinto myönnettiin "tehokkaiden sinisten ledien keksimisestä, mikä on tehnyt mahdolliseksi kirkkaat ja energiaa säästävät valkoisen valon lähteet".

Kemian palkinto puolestaan meni kahdelle amerikkalaiselle, Eric Betzigille ja William Moernerille, sekä saksalaiselle Stefan Hellille. Palkinto myönnettiin "huipputarkan fluoresenssimikroskopian kehittämisestä".

Japanilaistutkijoiden keksintö on käytännössä tuttu meille kaikille. Ledejä käytetään nykyisin niin kotien ja julkisten tilojen valaisimissa, mainostauluissa, taskulampuissa kuin erilaisissa merkkivaloissakin.

Akasaki, Amano ja Nakamura kehittivät sinisen ledin 1990-luvun alussa. Punaisia ja vihreitä ledejä oli ollut olemassa jo vuosikymmeniä, mutta vasta sinisen ledin kehittäminen teki mahdolliseksi energiatehokkaan teknologian soveltamisen valaistukseen. Kolmella erivärisellä ledillä saadaan nimittäin aikaan valkoista valoa.

Led-valaisimien teho on suuri ja virrankulutus pieni. Tekniikka kehittyy kaiken aikaa, mutta jo nyt tehokkaimmat led-lamput vastaavat wattia kohti antavalta valoteholtaan 16 tavallista hehkulamppua ja lähes 70 loisteputkea. Keksintö on merkittävä myös ympäristön ja luonnonvarojen kannalta. Noin neljännes maailman sähkönkulutuksesta menee valaistukseen, joten led-lamppujen energiansäästö on merkittävä tekijä.

Myös niiden valmistus säästää raaka-aineita. Siinä missä tavallinen hehkulamppu kestää noin tuhat tuntia ja loisteputki noin 10 000 tuntia, ledien kesto on parhaimmillaan jopa 100 000 tuntia. Vähäinen tehontarve mahdollistaa lisäksi valaistuksen kehittämisen seuduilla, joilla ei ole kunnollista tai lainkaan sähköverkkoa: led-lamppuihin voi tuottaa tarvittavan määrän sähköä yksinkertaisilla aurinkopaneeleilla.

Kemian Nobel-palkinnon saanut tutkimus liittyy sekin valoon. Optisen mikroskoopin erotuskyvylle asettaa rajoituksen valon aallonpituus: sillä on mahdoton erottaa rakenteita, joiden koko on alle puolet käytetyn valon aallonpituudesta.

Eric Betzig, William Moerner ja Stefan Hell ratkaisivat ongelman tahoillaan kahdella eri tavalla. Hell kehitti vuonna 2000 STED-mikroskopian (Stimulated Emission Depletion). Siinä käytetään kahta lasersädettä, joista toinen saa ensin fluoresoivat molekyylit hohtamaan, ja toinen kumoaa niiden lähettämän säteilyn lukuunottamatta nanometriluokassa olevista rakenteista tulevaa valoa.

Betzigin ja Moernerin toisistaan riippumattomasti kehittämässä menetelmässä yksittäisiä fluoresoivia molekyylejä "sytytetään" ja "sammutetaan" vuoron perään, jolloin yhdistämällä niistä otetut kuvat saadaan aikaan huipputarkka näkymä tarkasteltavaan kohteeseen.

Tällaisen nanoskopian avulla pystytään tarkastelemaan esimerkiksi solujen toimintaa molekyylitasolla. Yhtenä sovelluksena on seurata Parkinsonin, Alzheimerin ja Huntingtonin tauteihin liittyvää proteiinien kertymistä hermosoluihin.

Lisätietoa Nobelin tämänvuotisista fysiikanpalkinnoista löytyy täältä ja kemianpalkinnoista täältä.

Tiedetuubi käynnillä Shuji Nakamuran laboratoriossa: