Tehdas saapui avaruusasemalle sunnuntaina

Ma, 12/18/2017 - 10:30 By Jari Mäkinen

Viime perjantaina matkaan laukaistu SpaceX -yhtiön Dragon-alus saapui eilen Kansainväliselle avaruusasemalle mukanaan kaksi tonnia tavaraa. Mukana oli myös pienikokoinen valokuituja tekevä laite: kyseessä on ensimmäinen yritys valmistaa kaupallisia tuotteita avaruudessa.

Valokuituja tekevä laite on kooltaan mikroaaltouunin kokoinen ja sen valmistaja Made in Space -yhtiö aikoo testata sen paitsi sitä, miten valokuitujen tekeminen painottomuudessa onnistuu sarjatuotantona, niin myös ovatko avaruuskuidut parempia kuin Maan päällä tehdyt.

Kokeiden ja teorian mukaan painottomuudessa (tai tarkalleen ottaen mikropainovoimassa) valokuidun lasiin muodostuu vähemmän läpinäkyvyyttä haittaavia kiteitä, joten avaruusvalokuidut voivat välittää enemmän tietoa ja pitempiä matkoja. 

Painottomuuslennoilla tehdyissä testeissä on onnistuttu valmistamaan valokuituja, joissa on noin kymmenen kertaa puhtaampia.

Koska parhaimmissakin kuiduissa niiden läpi kulkeva laservalo hiipuu vähitellen, täytyy pitkissä kaapeleissa olla välissä vahvistimia. Tyypillisesti näitä on esimerkiksi merenalaisissa valokuitukaapeleissa 50 – 100 kilometrin välein. 

Laskennallisesti avaruusvalokuidun avulla olisi mahdollista tehdä kaapeli Atlantin ali siten, että siitä ei tarvittaisi yhtään vahvistinta. Lisäksi kaapelin kapasiteetti olisi mahdollisesti joopa 100 kertaa nykyisten verran.

Nyt Kansainväliselle avaruusasemalle viety laite on vielä testaamista. Sen tehtävänä on valmistaa avaruudessa kilometrin verran valokuitua, joka on saanut nimen ZBLAN. Tämä tapahtuu nyt joulukuun lopussa ja tammikuun alussa, ja kun Dragon-alus palaa takaisin Maahan tammikuun lopussa, tuo se valokuidun mukanaan.

Mikäli avaruudessa tehty kaapeli on niin hyvää kuin yhtiö väittää, kannattaisi sitä alkaa tehdä avaruusasemalla aivan kaupallisesti. Kyseessä on juuri sopiva tuote avaruusteollisuuden aloittamiseen: valokuitu on kevyttä, mutta sen hinta on varsin korkea, ja tuote voisi olla paljon maanpäällistä parempi painottomuudessa tehtynä. 

Eli avaruustuotteesta voisi pyytää niin paljon korkeampaa hintaa, että sen tekeminen kannattaa.

Made in Space -yhtiö on nimensä mukaisesti keskittynyt kehittämään avaruustuotantoa, ja tämä valokuitulaite on jo kolmas heidän avaruusasemalle lähettämänsä kapine. Kaksi ensimmäistä ovat olleet paljon huomiota herättäneitä 3D-tulostimia, joilla on tutkittu tulostustekniikan toimimista avaruudessa.

Nyt lähetetty laite avaa kuitenkin ovia kaupalliseen tuotantoon avaruudessa. Avaruusasemaan suunnitellaan liitettäväksi lähivuorina uusia moduuleita, joiden sisällä voisi olla teollista tuotantoa - tosin vielä pienessä mittakaavassa. Varsinaiset avaruustehtaat seuraavat sitten myöhemmin.

Valokaapelin ohella muita lupaavia aineita avaruudessa tehtäviksi ovat erikoiset metalliseokset tai lääkkeet, jotka ovat joko mahdottomia tai kalliita tehtäväksi painovoiman vallitessa.

Pidemmällä tähtäimellä raaka-aineita avaruustuotantoon ei kannata enää tuoda maapallolta, vaan louhia vaikkapa Kuusta tai asteroideilta. 

Energiaahan avaruudessa on yllin kyllin tarjolla, joten heti kun pääsy avaruuteen tulee edullisemmaksi, tulee avaruustehtaista varmasti totta hyvin nopeasti.

Dragon saapuu avaruusasemalle

Kierrätysalus kierrätysraketilla

Tuorein rahtilento avaruusasemalle on kiinnostava myös siksi, että SpaceX käytti nyt paitsi kierrätettyä Falcon 9 -kantorakettinsa ensimmäistä vaihetta, niin myös kertaalleen jo avaruudessa käynyttä Dragon-kapselia. 

Rakettivaihe teki edellisen lentonsa viime kesäkuun 3. päivänä, kun se nosti myös Dragon-aluksen kiertoradalle. Tuolloin käytetty Dragon oli jo "kierrätetty", kuten siis on nytkin käytetty alus. Tämä oli avaruudessa keväällä 2015.

Edellisellä SpaceX:n tekemällä avaruusaseman huoltolennolla elokuussa käytettiin uutta Dragon-alusta, mutta kyseessä oli viimeinen sellainen ennen uuden version käyttöön ottamista. Siksi kaikki nykyisen kaltaisen Dragonien lennot ensi vuonna käyttävät kierrätettyjä kapseleita.

Seuraavaksi odotellaan useampaan kertaan käytettyjen alusten ja ensimmäisten vaiheiden tulemista – siihen ei mene enää kauaa!

Nyt tehty Falcon 9:n laukaisu oli jo 50. SpaceX:n avaruuslento, kun mukaan lasketaan myös alkuperäisten Falcon 1 -rakettien koelennot.

Yhtiö ennätti tekemään tänä vuonna peräti 17 laukaisua, eli keskimäärin yhden lennon kolmessa viikossa. Ensi vuonna tahti kasvaa tästäkin, sillä tuolloin SpaceX:n käytössä on kolme laukaisualustaa: kaksi Floridassa ja yksi Kaliforniassa.

Metsähovi viimein Suomen virallisessa ajassa - mittaustarkkuus paranee huimasti

To, 08/31/2017 - 21:05 By Jarmo Korteniemi
Kuva: New 1lluminati / Flickr

Otaniemi ja Metsähovi on juuri yhdistetty toisiinsa ennennäkemättömän tarkasti. Yhdessä ne pitävät tarkkaa kirjaa Suomen virallisesta ajasta.

Suomen virallinen aika määritellään Otaniemessä. Tehtävä on kuulunut VTT:n Mittaustekniikan keskuksen (MIKES) aikalaboratoriolle jo vuodesta 2000 lähtien. 

Nyt Metsähovin observatorioaluekin on yhdistetty suoraan tähän "aikalähteeseen". Uusi, valokaapelia pitkin toimiva yhteyslinkki rakennettiin jo alkukesästä. Linkin toimintaa ja stabiilisuutta on tutkittu ja mitattu nyt kesän ajan.

Metsähovin observatorioalue sijaitsee Kirkkonummella, 50 kilometrin päässä Otaniemestä. Sieltä löytyvät sekä Maanmittauslaitoksen Paikkatietokeskuksen geodeettinen tutkimusasema että Aalto-yliopiston radiotutkimusasema. Kummankin tahon tutkimustarkkuus paranee (aikaleimojen osalta) Suomen viralliseen aikaan liittämisen johdosta.

Valosignaalin kulkuajan Otaniemestä Metsähoviin ja takaisin huomattiin vaihtelevan yhteydellä seitsemisen nanosekuntia. Syynä on pitkän valokuidun lämpölaajeneminen vuorokauden mittaan. Myös muut valokuidun ominaisuudet muuttuvat samalla hieman.

Ajansiirron tarkkuus on Maanmittauslaitoksen tiedotteen mukaan noin 0,1 nanosekuntia (10-10 s) tai jopa vieläkin parempi. Taajuuden siirrossa taas "päästään tällä hetkellä noin 15 [merkitsevän?] numeron tarkkuuteen".

Wirallinen aika

Suomen virallinen aika määritetään MIKESin aikalaboratoriossa. Ajanmääritykseen käytetään tarkkaa venäläisvalmisteista vetymaseria (CH1-75A). Sen apuna ja varmistuksena toimii lisäksi kaksi muuta vetymaseria sekä kaksi cesium-atomikelloa.

MIKESin ajan virheen sanotaan olevan noin sekunti 100 000 vuodessa. Aikaa myös verrataan jatkuvasti GPS:n avulla välitettyihin kansainvälisiin aikamittauksiin. MIKES ilmoittaa aikansa epävarmuudeksi alle 10 nanosekuntia UTC:hen (universaaliaikaan) verrattuna.

Suomen virallisen ajan poikkeamat kansainvälisestä ajasta vuosina 2011–12.

Aikamittauksessa käytetty vetymaser vastaa toimintaperiaatteeltaan laseria (säteilykimppu on koherentti, samassa tahdissa ja samaa aallonpituutta), mutta siinä käytetään näkyvän valon sijasta mikroaaltoja. Maserit ovat yksi tarkimmista nykyään käytössä olevista keinoista pitää kellot ajassa.

Maserilla tehdyn ajanmäärityksen jälkeen ajanhetki viestitetään (siirretään) Metsähoville valokuitua pitkin.

Siirron apuna käytetään uutta White Rabbit -protokollaa. Sen avulla kelloja voidaan synkronoida alle nanosekunnin tarkkuudella pitkienkin matkojen päästä. White Rabbit kehitettiin alunperin Euroopan hiukkasfysiikan tutkimuskeskuksessa CERNissä. Nimi viittaa kelloaan hermostuneesti vilkuilevaan jänikseen Liisa Ihmemaassa -kirjassa.

VTT MIKES oli yksi ensimmäisistä tutkimuslaitoksista, joka otti White Rabbitin käyttöön ajan ja taajuuden siirtämiseksi pitkien välimatkojen päähän.

Ajansiirto tukee geodeettisia mittauksia Metsähovissa. Rakenteilla oleva geodeettinen radioteleskooppijärjestelmä tarvitsee tarkan ajan ja taajuuden mittaustensa pohjaksi. Eivätkä muutkaan Metsähovin mittaukset tietystikään kärsi entistä paremmasta aikatarkkuudesta.

Aikalinkin kautta Suomen virallinen aika voidaan myös liittää entistä paremmin kansainvälisiin geodeettisiin verkostoihin, kuten GNSS-satelliittipaikannusjärjestelmään.

Radiotutkimusasemalla on lisäksi jo atomikelloja, joita voidaan vastavuoroisesti käyttää Suomen virallisen ajan varmentamiseen.

MIKES tarjoaa kellontarkistuspalvelua myös kotikäyttäjille. Se on tosin paljon Metsähoville toimitettua Suomen virallista aikaa epätarkempi. Nopealla nettiyhteydellä pääsee kuitenkin jopa alle 0,1 millisekunnin päähän virallisesta, mikä lienee riittävä useimpien kotikäyttäjien tarpeisiin.

Artikkeli perustuu Maanmittauslaitoksen tiedotteeseen.

Lisätietoa: VTT:n Mittatekniikan keskus MIKES

Otsikkokuva: New 1lluminati / Flickr

Pieni piirros, mutta vallankumous tietoliikenteessä

Ke, 04/20/2016 - 11:09 By Jari Mäkinen
Piirros Randy Gilesin muistikirjasta

Päivän kuva tulee vuoden 2008 Millennium-palkintokandidaatin Randy Gilesin muistikirjasta. Piirroksessa on periaate laitteesta, jota sinäkin käytät nyt tätä juttua netin kautta lukiessasi: valokuituituvahvistin.

Päivän kuvaGiles kehitti valokuituvahvistimen periaatteen Bell-yhtiön laboratoriossa vuonna 1985 yhdessä Emmanuel Desurviren kanssa.

Aivan ensimmäisenä ajatuksen uudenlaisista, harvinaisilla maametalleilla seostetuista optista kuiduista esitti Southamptonin yliopiston tutkija David Payne, mutta Bell Labs tutki asiaa jo tuolloin. Esimerkiksi erbiumilla kyllästetty kuitu saattoi toimia ikään kuin valovahvistimina, ja siitä saatettiin kehittää laite, jonka avulla viimeinkin voitaisiin tehdä hyvin pitkiä valokaapeleita; niissä hiipuvaa valoa voitaisiin vahvistaa tasaisin välimatkoin erbium-vahvistimin.

Millennium-palkinnon nettisivu kirjoittaa Gilesistä ja hänen osuudestaan keksinnössä:

Randy Giles, Bellin laboratorioiden laservelho, oli aina ollut kiinnostunut kaikenlaisten optisten laitteiden valmistamisesta. Hän liittyi Desurviren ryhmään vuonna 1986 ja luotsasi laservahvistimen kehittämisestä teollisen kehityshankeen. “Suurin ero Southamptonin yliopistossa tehdyn tutkimuksen ja Bellin laboratorioissa tehdyn tutkimuksen välillä on se, että me olemme teollisuuslaboratorio. Joten hankimme välittömästi tarvittavat työvälineet ja resurssit, jotta pystyimme selvittämään keksinnön merkitystä televiestinnälle. Jokainen tuntui kärsimättömänä odottavan, voitaisiinko todellista tietoa todella vahvistaa hyvälaatuisena ja häiriöttömänä”, Giles kertoo.

Nykyaikaiset valokuituverkot eivät olisi mahdollisia ilman valovahvistimia; tietoliikenne ja internet puolestaan luottavat nykyisin yhä lisääntyvissä määrin valokuituun. Lisäksi optisilla vahvistimilla on käyttöä myös teollisuudessa, missä käytetään suuritehoisia lasereita merkitsemiseen ja työstöön. Myös lääketieteellisissä leikkauksissa käytettävät laserit hyötyvät näistä vahvistimista. Myös laseraseita kehittävät sotilaat ovat tekniikasta hyvin kiinnostuneita.

Ja keksinnön käytännön soveltaminen alkoi tästä, Randy Gilesin muistikirjan kuvasta.

Kuva on otettu Bell-laboratorioiden Crawford Hillin tutkimuslaitoksessa New Jerseyssä, missä Giles työskentelee edelleen optiikan ja optotroniikan parissa – tosin toimien nykyisin myös Bell Labsin Soulin toimipisteen johtajana etänä.

Jutussa on Millennium-palkinnon lisäksi toinenkin yhteys Suomeen: Bell Labs on nykyisin Nokian omistuksessa Alcatelin Nokiaan sulauttamisen kautta.