Ultralyhyen laserpulssin syntyhetki on pystytty havaitsemaan ensimmäistä kertaa – ja tulos on hyvin jännä. Tampereen teknillisen yliopiston fotoniikan tutkijat olivat mukana hankkeessa, jonka tulokset julkaistiin juuri Nature Photonics -lehdessä.
Ultralyhyen aallonpituuden laserit ovat kriittisiä komponentteja muun muassa monissa tietoliikenteen ja teollisen tuotannon prosesseissa.
Niiden kehittäminen on johtanut fysiikan Nobelin palkintoihin, mutta siitä huolimatta niiden synty on silti yhä edelleen arvoitus: miten ihmeessä laser kykenee tuottamaan niin kirkkaan valonvälähdyksen?
Asiaa on tutkittu jo 1960-luvulta alkaen. Silti vasta nyt on ollut tullut mahdolliseksi todistaa laserpulssin syntyhetki ja nähdä kuinka se muodostuu kohinasta.
"Ultralyhyiden laserien tutkiminen on haasteellista, koska ne tuottavat tyypillisesti enintään pikosekunnin mittaisia pulsseja", kertoo professori Goëry Genty, joka valvoi tutkimusta Tampereen teknillisen yliopiston (TTY) fotoniikan laboratoriossa.
"Optiset mittaustekniikat eivät ole kyenneet mittaamaan laserin vakaantumista edeltäviä monimutkaisia dynaamisia prosesseja ja ultralyhyiden pulssien satoja (joskus tuhansia) purkauksia."
Tuoreessa Nature Photonics -lehdessä julkaistu tutkimus näyttää selvästi, kuinka laserpulssi kehittyy kohinasta kuin tyhjästä ja värähtelee voimakkaasti ennen vakaantumistaan. Tulokset tuottavat uutta tietoa laserpulssien toiminnasta ja niillä on vahvaa tieteidenvälistä sovellettavuutta.
"Kyseessä on esimerkki ns. dissipatiivisesta solitonijärjestelmästä, joka on yksi epälineaarisen tieteen peruskäsitteistä ja jota voidaan soveltaa muun muassa biologian, lääketieteen ja ehkä jopa yhteiskuntatieteiden alueilla", sanoo professori John M. Dudley, joka ohjasi tätä ranskalaisessa Bourgogne-Franche-Comtén yliopistossa tehtyä tutkimustyötä.
Erityinen tieteellinen edistysaskel, joka mahdollisti kyseisen tutkimuksen, on laserin ajallisen intensiteetin reaaliaikainen mittaus alle pikosekunnin tarkkuudella sekä laserin spektrin mittaaminen alle nanometrin tarkkuudella.
Tarkkailemalla näitä ominaisuuksia samanaikaisesti tutkijat onnistuivat kehittämään edistyneen laskennallisen algoritmin, joka tunnistaa laserin sähkömagneettisen kentän ominaisuudet.
Professori Goëry Genty kuvattuna Tampereen teknillisen yliopiston fotoniikan laboratoriossa.
Ryhmään kului tutkijoita Tampereen teknillisen yliopiston fotoniikan laboratoriosta ja ranskalaisesta FEMTO-ST –instituutista (CNRS ja Bourgogne-Franche-Comtén yliopisto). Kun tutkijat rekonstruoivat sähkömagneettisen kentän syntymistä, he havaitsivat kohinasta laajaa vuorovaikutusta dissipatiivisten solitonijärjestelmien välillä.
"Käytimme tutkimusmenetelmää, joka toimii alhaisilla tehotasoilla ja korkeissa nopeuksissa. Ryhmämme todisti ensimmäistä kertaa muun muassa dissipatiivisten solitonien välisiä törmäyksiä ja yhteensulautumisia", Genty selittää.
Tutkijat uskovat, että tulokset parantavat ultralyhyiden lasereiden suunnittelua ja suorituskykyä.
"Tämä on kiehtova tutkimusalue, jossa perustutkimuksesta lähtevillä kysymyksillä on todellista käytännön merkitystä tulevaisuuden fotoniikan kehittämisessä", uskoo Dudley Tampereen teknillisen yliopiston tiedotteessa, mihin tämäkin artikkeli pohjautuu käytännössä suoraan.