Outo Tabbyn tähti yllättää jo kolmannen kerran

Kuva: Kevin Gill / Flickr
Kuva: Kevin Gill / Flickr

Ehkäpä oudoin ikinä löydetty tähti muuttuu yhä oudommaksi. Tabbyn tähti himmenee aina vain uusilla tavoilla.

Kerroimme ehkä kaikkein oudoimmasta ikinä löydetystä tähdestä vajaa vuosi sitten. Silloin tuon muutoin normaalilta vaikuttavan tähden huomattiin himmentyneen rajusti, nopeassa ja epäsäännöllisessä tahdissa.

Nyt tuo Tabbyn tähdeksi tituleerattu taivaankappale yllättää jälleen.

Elokuun 2016 alussa arXiv-palveluun jätetty tutkimus osoittaa tähden himmentyneen epätavallisesti ainakin neljän vuoden ajan. Havainto tehtiin avaruusteleskooppi Keplerillä.

Tutkimuksesta napattu normalisoitu säteilyvuo laskee kuin lehmän häntä. Värit kuvaavat Keplerin erilaisissa kuvausasennoissa tehtyjä havaintoja. (Montet & Simon 2016, arXiv.org).

Nyt raportoitu havainto myös tukee aiempaa havaintoa itse Tabbyn tähdestä: se on ehkä himmentynyt jo sadan vuoden ajan. Tuo hätkähdyttävä löytö on kuitenkin kiistanalainen, sillä vanhojen aineistojen tulkinnassa on ongelmansa.

Tabbyn tähden on siis huomattu himmenevän kolmella eri tavalla. Se kokee nopeita ja epäsäännöllisiä rajuja himmenemisiä, joiden kesto lasketaan päivissä. Toisaalta sen kirkkaus laski Keplerin "silmissä" kertarysäyksellä 2,5 % vuodessa (mikä on tähdelle paljon). Pisteenä iin päällä on vielä pitkäaikaisempi, vuosia tai ehkä jopa vuosisadan kestänyt hidas systemaattinen himmeneminen.

Tabbyn tähden kehitys ei vastaa mitään tähtien kehitysmalleja. Havaintoja myös verrattiin yli 500 muuhun Keplerin kuvaaman tähden käytökseen. Vaikka jotkut himmenivätkin ajoittain, yhtään Tabbyn tähden kaltaista ei löytynyt.

Outouksien syyt ovat yhä hämärän peitossa. Yksikään ehdotettu tapahtumaketju tai malli ei kuitenkaan selitä kaikkea.

Yksi mahdollisuus on tähden napa-alueella kasvava jättimäinen tähdenpilkku, joka ei tosin selitä lyhyitä vaihteluita. Toinen vaihtoehto on laajan, harvan ja epäsäännöllisen esteen siirtyminen tähden eteen, kenties planeettojen tai komeettojen törmäyksen seurauksena. Se taas ei selitä pitkän aikavälin kirkkausvaihteluista mitään, ainakaan uskottavasti. Aiempi tutkimus povasi, että 200-kilometrisiä komeettoja tarvittaisiin epärealistiset 650 000 kappaletta, jotta satavuotinen himmenemisefekti saataisiin aikaan.

Ja sitten on tietysti mediakohun aiheuttanut spekulatiivinen heitto, että joku olisi rakentamassa tähden ympärille massiivisesta rakennelmaa tai tähtilaivastoarmadaa. Tälläkin selityksellä on omat ongelmansa, suurimpana mustan kappaleen säteily.

Aika näyttää, mikä Tabbyn tähden erikoisuuksien syyksi paljastuu. Ensimmäisen tutkimuksen tekijät ovat saaneet joukkorahoitettua uuden seurantakampanjan. He toivovat saavansa tähden jälleen kiinni itse teosta, ja tällä kertaa laajemmalla spektrikaistalla kuin aiemmin.

Lue myös aiemmat juttumme aiheesta: Ensimmäinen kertoi tähden löydöstä, ja sisältää mukana olleen suomalaistutkijan haastattelun. Toisessa käsitellään vanhojen aineistojen kätköistä paljastunutta satavuotista himmenemistä.

Päivitys 10.8.2016 klo 11.30: Muokattu ensimmäisten kappaleiden sanamuotoja ja aukaistu selitysmallien ongelmien luonnetta.
Päivitys 10.8.2016 klo 16.30: Korjattu diagrammin kuvatekstiä. Aiemmin sanoimme värien tarkoittavan eri spektrikanavia.

Otsikkokuva: Kevin Gill / Flickr

Oudosti himmenevä tähti kävi entistä eriskummallisemmaksi

Kerroimme lokakuussa 2015 oudosta Tabbyn tähdestä. Se sai tuolloin huomiota satunnaisten himmenemistensä vuoksi. Jokin ulkopuolinen ja toistaiseksi selittämätön peittää tähden valoa vuorokausia kerrallaan. Kirkkausvaihtelut eivät ole itse tähdestä peräisin.

Villeimmissä ideoissa tähteä ympäröi vieraan sivilisaation satelliittiarmada. Todennäköisempi syy himmenemiselle on kuitenkin tähteä kiertävien komeettojen aiheuttama varjostus. Löydön tehneessä tutkimuksessa oli mukana myös Turun yliopiston tutkija Heidi Korhonen, joka kertoi näkemyksiään aiemmassa jutussamme.

Nyt tähti on osoittautunut entistäkin oudommaksi. Se on nimittäin himmentynyt hiljakseen ainakin sadan vuoden ajan. Bradley Schaefer jätti tutkimuksensa aiheesta arXiv-palveluun 13.1.2016.

Tutkimuksessa perehdyttiin tarkasti Harvardin yliopiston vanhoihin tähtikuviin. Tabbyn tähti oli kuvattu niissä 1581 kertaa vuosien 1890 ja 1989 välillä, mutta kuvista vain 1232 täytti tutkimuksen laatukriteerit. Tähden kirkkaus keskiarvotettiin lopuksi viiden vuoden jaksoissa, jotta päästiin käsiksi pitkän ajan suuntauksiin.

Yllä: tähden himmeneminen sadan vuoden aikana. Harmaalla merkittyjen kahden vertailutähden kirkkaus on pysynyt suunnilleen vakiona samana aikana. Kuva: Bradley Schaefer / arxiv.org

 

Osoittautui, että tähti on himmentynyt jokseenkin tasaisesti ainakin sadan vuoden ajan. Himmeneminen ei ole suurta, mutta se on systemaattista. Magnitudi on muuttunut noin 0,2:lla (12,25 → 12,45, sillä magnitudi kuvaa kirkkautta käänteisesti). Ainoa poikkeus trendiin löytyy sarjan alkupuolelta, jolloin tähden kirkkaus putosi äkisti noin kymmeneksi vuodeksi.

Uudessa tutkimuksessa päätellään loogisesti, että pidemmän jakson himmenemisen syy on sama kuin 1900-luvun alussa ja sekä tuoreissa, avaruusteleskooppi Keplerin havainnoista löydetyissä nopeissa muutoksissa. Mekanismi jää kuitenkin yhä mysteeriksi, sillä vanhat ehdotelmat eivät ole vakuuttavia.

Schaefer laski, että vuosisataisen muutoksen selitykseksi tarvittaisiin 200-kilometrisiä komeettoja noin 650000 kappaletta. Tämä ei hänestä kuulosta realiselta. New Scientistille antamassaan haastattelussa tutkija lyttää myös myös alienien oudot rakennelmat. Niiden kun pitäisi säteillä lämmetessään infrapunasäteilyä mustan kappaleen lailla, eikä moisesta ole havaintoa. Ja tähden ympäröiminen edes osaksi rakennelmilla noin lyhyessä ajassa vaatisi jopa edistyneen sivilisaation mittakaavssa aivan käsittämättömiä voima- ja raaka-ainevaroja.

Uusi tutkimus osoittaa kuitenkin, että vanhojen aineistojen perinpohjainen hyödynnys kannattaa. Jopa uusien ja hulppeiden tutkimuslaitteiden aikakaudella. Kukapa tietää, vaikka ensimmäinen todellinen havainto maanulkoisesta elämästä (tai jostain vielä eksoottisemmasta) olisi jo tehty. Se voi hyvinkin lymytä Harvardin tai jonkin muun arkiston uumenissa, odotellen löytäjäänsä.

Tähden alkuperäisen KIC 8462852 -nimityksen rinnalle tullut Tabbyn tähti -nimitys tulee outoudesta raportoineen tutkimusartikkelin ensimmäisen kirjoittajan, Tabetha S. Boyajianin, etunimestä. Ihmisten mukaan nimettyjä tähtiä on vain kourallinen, ja jokainen niistä on jollain tavalla erikoinen.

 
Uudesta havainnosta kertoi mm. New Scientist. Itse tutkimus on luettavissa arXiv-palvelusta.
 
Otsikkokuva: Kevin Gill / Flickr
Outo tähti kutkuttelee median sensaationappulaa Jarmo Korteniemi Pe, 16/10/2015 - 12:53
Kuva: Kevin Gill / Flickr
Kuva: Kevin Gill / Flickr

Nopealla silmäyksellä tähti KIC 8462852 on normaali keltavalkoinen F3-luokan kääpiötähti. Se on jonkin verran Aurinkoa suurempi ja kirkkaampi, pyörähtää akselinsa ympäri kerran hieman alle vuorokaudessa, ja liikkuu varsin hitaasti meistä poispäin. Tähti sijaitsee liian kaukana näkyäkseen paljain silmin. Hyvällä teleskoopilla sen voi kuitenkin erottaa Joutsenen tähdistössä.

Neljän vuoden seurannassa se on kuitenkin osoittautunut yhdeksi oudoimmista tunnetuista tähdistä. Ehkä kaikkein oudoimmaksi.

KIC 8462852 on epäsäännöllisesti muuttuva tähti. Tähden kirkkaus, eli siitä meille tuleva säteilyvuo, pienenee aika ajoin. Sekä muutoksen voimakkuus että kesto vaihtelevat: Tähden säteily on pitkään tasaista, kunnes äkillisesti pienenee jopa viidenneksellä. Himmeneminen on tähän mennessä kestänyt pisimmillään 80, lyhimmillään 5 vuorokautta. Sitten kirkkaus palaa ennalleen, kuin mitään ei olisi tapahtunut.

KIC 8462852
Tähden tyyppi F3 V/IV
Ominaisnopeus +4 km/s
Pyörähdysaika n. 0,88 vrk
Etäisyys Auringosta n. 1480 vv
Sijainti taivaalla Joutsen
Näenn. magnitudi 11,7

Toisin kuin muilla muuttuvilla tähdillä, KIC 8462852:n valokäyrän muutokset ovat outoja. Ne eivät selity tähden toiminnalla, eivätkä ne ole kiertävien planeettojenkaan aiheuttamia näennäisefektejä.

Tutkimuksessa mukana ollut Turun yliopiston tutkija Heidi Korhonen ihmettelee havaintoja yhä:

”Löytö on todella mielenkiintoinen. Emme ole koskaan ennen nähneet vastaavanlaisia himmenemisiä tähdissä. Ne ovat todellakn jotain epätavallista ja mysteeristä. Mietimme useita selitysvaihtoehtoja, ja tarkistimme myös tarkasti, ettei kyse ollut instrumenttivirheistä. Emme keksineet mitään keinoa, jolla itse tähti voisi tehdä ja aiheuttaa himmenemiset. Oma osuuteni keskittyi juuri tähden tarkempaan tutkimiseen. Ainoana jäljelle jäävänä selityksenä ovat mahdolliset tähden ympärillä olevat tekijät.”

Juuri tuo tekee tähdestä oudon. Aika ajoin jotain tulee juuri KIC 8462852:n ja meidän väliimme. Jokin peittää ajoittain merkittävän osan tähden kirkkaudesta. Tai oikeastaan näyttää siltä, että kyse on monista pienemmistä joistain, joiden yhteinen muoto lisäksi muuttuu.

Laskelmien mukaan varjostava materia lienee alle 25 astronomisen yksikön (AU) päässä tähdestä. Täkäläisittäin se vastaisi aluetta jossain Neptunuksen radan sisäpuolella.

Tähti aiheuttaa mediahepulin

Pian tiedejulkaisun käsikirjoituksen julkaisun jälkeen The Atlantic teki uutisen aiheesta. Siinä haastateltiin SETI-tutkija Jason Wrightiä, joka kommentoi löytöä ulkopuolisena asiantuntijana: ”tämä näyttää joltain, mitä vieraan sivilisaation voisi olettaa rakentavan”. Hän visioi, että kyse voisi olla jonkinlaisesta Dysonin pallon (tai -kehän tai -parven) tyylisestä valtavasta rakennelmasta. Sellainen olisi todiste maanulkoisen elämän jättiprojektista, jolla valjastetaan tähden energiaa erittäin tehokkaasti käyttöön.

Villin spekulaation siivittämä uutinen sai oitis paljon palstatilaa. Juttua lainasivat pian ainakin Al Jazeera, The Express, FOX News, The Independent parissakin artikkelissa, sekä ties mitkä muut mediat. Kaikki otsikoivat juttunsa toinen toistaan villimmin. Suomeksi uutista ovat levittäneet ainakin Tekniikka ja Talous, Kauppalehti, MTV, Iltalehti ja Voice.

Lausuntoja on kuitenkin paisuteltu suuresti. Alusta lähtien.

Wright pahoittelee aikaansaamaansa mediasotkua blogissaan: ”Olen hieman nolostunut kaikesta siitä vähemmän vastuullisesta uutisoinnista, joka liioittelee näitä todisteita. Etenkin siksi, ettei meillä ollut mitään valmiina näytettäväksi kollegoillemme, jotta he voisivat antaa medialle omia valistuneita näkemyksiään aiheesta.” Hän julkaisi oman artikkelinsa vasta tänään (16.10.), ja siinä KIC 8462852 on vain pienessä sivuosassa. Tähti on yksi esimerkki monista mahdollisuuksista, miltä keinotekoinen ”megarakennelma” voisi ensi silmäyksellä meiltä katsottuna näyttää. Wright myös toteaa, että varmistukseen tarvittaisiin havainto keinotekoisesta signaalista. Sellaista ei ole.

Wright myös tarkentaa Business Insiderille, että ”pistäisin sen todennäköisyyden, että kyse on maanulkoisesta elämästä, hyvin pieneksi.”

”Homma on päässyt vähän käsistä”, Wrightin kollega Kimberly Cartier jatkaa mediakohusta. Hän painottaa, että ”selvennyksen vuoksi sanottakoon, ettemme minä tai Jason yritä todistaa, että kyse on alienien jättirakennelmasta – muttemme myöskään pysty sulkemaan sitäkään mahdollisuutta täysin pois”.

Kyse siis on siitä, että tutkijat pitävät mielensä avoimina moniselitteisten aineistojen edessä. Villitkin ideat pidetään elossa testausta varten. Kun kaikkia vaihtoehtoja mietitään, päästään varmempaan lopputulokseen. Riittämätön ja epäselvä data ei kuitenkaan todista ufohenkilöiden tai avaruuden jättiarmadan olemassaolosta – vaikka media kuinka haluaisi mässäillä ajatuksella

Kummankin jutun vertaisarviointi on lisäksi vielä kesken. Tutkijat joutunevatkin vielä viilaamaan argumenttejaan ennen kuin tiedeyhteisö ottaa heidän tulkintansa täysin vakavasti.

Yllä: Tähden valokäyrä ja sen yksityiskohtia. Huomaa pystyakselien erilaiset skaalat. Lähde: Boyajian ja kumpp., 2015.

Jotain siellä silti on

”Media on tainnut jo keksiä tästä kaiken sanottavan. Scifin ystävänä alienin jättimäinen rakennustyömaa kyllä kuulostaa mieltä kutkuttavalta vaihtoehdolta”, Korhonen heittää pilke silmäkulmassa. ”Tutkijana pidän kuitenkin kaikkein paljon todennäköisempänä selityksenä sitä, mitä julkaisussakin päättelemme.”

Tutkimuksessa, jossa Korhonenkin on mukana, löytöä pyöritellään avoimesti monelta kantilta. Siinä käydään läpi erilaisia vaihtoehtoja himmenemiselle. (Kannattaa huomata, että tuo eroaa radikaalisti Wrightin lähtökohdasta, jossa pyritään selittämään havaitut signaalit alieneilla.)

Kyse ei ole eksoplaneetasta, sillä sellaiset kulkisivat säännöllisin väliajoin tähden editse. Eikä suurikaan planeetta edes onnistuisi peittämään tähdestä kuin ehkä muutaman prosentin. Nyt havaittu on jotain suurempaa.

Tähden ympärillä oleva massiivinen ja paakkuinen kaasusta ja pölystä koostuva kertymäkiekko voisi selittää havainnot. Mutta kun tähti ei ole riittävän nuori, eikä ympäröivästä kiekosta ole mitään havaintoja. Samainen päättely sulkee muutamia muitakin skenaarioita pois laskuista. Esimerkiksi törmäykset asteroidien tai planeettojen kesken.

Vahvin ehdokas himmenemisen aiheuttajaksi on jättimäinen komeettojen pilvi. Tässä mallissa jokin lähitähden gravitaatio saa komeettaytimet liikkumaan kohti KIC 8462852:a. Lähemmäs päästyään komeetat hajoavat, ja synnyttävät epäsäännöllisen ja alati muuttuvan hiukkaspilven. Alustavasti näyttääkin siltä, että KIC 8462852:n lähellä (alle 1000 AU:n päässä) on himmeä M-luokan tähti. Ei ole kuitenkaan täysin varmaa, ovatko tähdet yhtä kaukana, vai ovatko ne vain lähes samalla linjalla Maasta katsottuna.

Komeettaideassa on kuitenkin edelleen ongelma – ja sama olisi keinotekoisten rakennelmienkin kanssa. Mikä ikinä tähden säteilyä blokkaakin, lämpenee varsin nopeasti, ja alkaa siksi säteillä infrapunasäteilyä (koska mustan kappaleen säteily). Mitään infrapuna-alueen ylimäärää ei kuitenkaan tähden tienoilta ole havaittu. Mikään selitetyistä malleista ei siis vielä pysty selittämään täysin kaikkea havaittua.

Oli kyse sitten massiivisesta komeettaryöpystä, törmäyksistä tai jostain aivan muusta, tapahtuma on sattunut tähden kehityksen aikaskaalassa vastikään. Muutoin ainepilvi olisi ehtinyt kasautua yhteen tai tippua tähteen. Se, että ihmiskunnan onnistuu todistaa tällaista tapahtumaa, on varsin harvinaista. Toisaalta Kepler-avaruusteleskooppi, jolla löydöt tehtiin, seuraa samanaikaisesti noin 150000 tähteä. Suuri lukumäärä nostaa todennäköisyyksiä, että jollain niistä sattuu jossain vaiheessa jotain harvinaista.

”Joka tapauksessa kyse on todella kiinnostavasta mysteeristä, jonka selvittämiseen tarvitsemme lisää havaintoja”, Heidi Korhonen summaa tilanteen.

Lisätutkimuksia on luvassa, jos tai kun rahoitus vain löytyy.

Kepler-avaruusteleskooppi on kehitetty eritoten eksoplaneettojen löytämiseen.

 

Päivitys klo 20.20: Lisätty kommentti infrapunaongelmasta.

Otsikkokuva: Kevin Gill / Flickr

Eksoplaneetoille nimet suomalaisesta mytologiasta?

Suomalaisella mytologialla on mahdollisuus tulla ikuistetuksi tähtitaivaalle. Yleisön annetaan äänestää yhteensä kahdenkymmenen eksoplaneettakunnan nimet. Järjestäjänä on Kansainvälinen tähtitieteellinen unioni IAU. Nimistä tulee siis täysin virallisia.

Mukana on kolme suomalaisvaihtoehtoa: Yksi mytologiaan perustuva nimistö 55 Cancri -järjestelmälle sekä kaksi vaihtoehtoa 47 Ursae Majoris -tähdelle kiertolaisineen. Tähdet sijaitsevat 40–46 valovuoden etäisyydellä meistä, ja erittäin hyvällä tuurilla toisen tai kummankin kiertolaisilla voi esiintyä elämää.

Yllä: Planeettakuntien kokovertailut. Ympyröiden koot kuvaavat kunkin planeetan massoja, eivät halkaisijoita.

 

Suomalaista mytologiaaImage

55 Cancri on kaksoistähtisysteemi. Päätähti on halkaisijaltaan suurempi kuin Aurinko, vaikkakin hiukan kevyempi. Sitä kiertää yli 1000 AU:n etäisyydellä (eli hyvin kaukana) pieni punainen kääpiötähti.

Tähden nimeksi on ehdotettu vainajien asuinpaikka Manalaa. Sen viiden planeetan nimet olisivat Aarni, Pohjola, Tuonela, Lintukoto sekä Vainajala.

Planeetat ovat suuria, pieninkin lähes Neptunuksen kokoinen. Massat ovat 8–1200 -kertaisia maapalloon verrattuna.

"Maailman aliseen" viittaavat nimet ovat osuvia kahdestakin syystä. Planeetat ovat ensinnäkin varsin kuumia, sillä niistä neljä kiertää tähteään reippaasti lähempänä kuin Maa Aurinkoa. Lähin kiepsahtaa tähden ympäri 18 tunnissa! Toisaalta planeettakunta lienee kaksi kertaa vanhempi kuin omamme, ja tähdessä on epätavallisen raskaita aineita.

Keskustähden erottaa kiikareilla Kravun tähdistön keskeltä. Tähden voi nähdä myös paljain silmin erittäin hyvissä olosuhteissa, eli pilvettömältä ja valosaasteettomalta yötaivaalta. Suomessa Kravun tähdistö nousee taivaanrannan ylle lokakuussa ja näkyy parhaiten helmi-maaliskuussa.

Päivä voisi ylläpitää elämää?Image

Toinen suomalaisittain merkittävä tähti sijaitsee Isossa Karhussa, aivan Pienen Leijonan rajalla. Tähti on hitusen Aurinkoa suurempi ja kirkkaampi ja erottuu yötaivaalta paljain silmin.

Systeemille on ehdotettu kahta suomalaisnimistöä.  Yhden ehdotuksen mukaan tähti olisi Virvatuli ja sen kaksi varmistettua planeettaa olisivat Terrakoti ja Lintukoto. Toisaalta tähden voisi nimetä myös Päiväksi, jolloin sen kiertolaiset olisivat yksinkertaisesti Aamu ja Ilta.

Myös kolmannesta planeetasta on selkeitä viitteitä, mutta sitä ei olla vielä nimeämässä.

Planeetat ovat suuria: sisin vastaisi kahta ja puolta Jupiteria, keskimmäinen on kaksi kertaa Saturnusta massiivisempi, ja kolmas lienee jotain 1–2 Jupiterin väliltä. Aamu ja Ilta kiertävät Päivää samalla etäisyydellä kuin oma asteroidivyöhykkeemme on. Kolmas olisi jossain Saturnuksen radan tuolla puolen, jos sitä nyt edes on.

Jättiläisplaneettojen radat ovat sellaisia, että "Päivän" elämän vyöhykkeen sisäkaarteessa voisi hyvinkin kierrellä yksi tai kaksi pientä maankaltaista planeettaa. Vaikka älykkään elämän, elämän tai edes elinkelpoisen planeetan todennäköisyys onkin varsin pieni, tähtijärjestelmää kohti on lähetetty jo kaksi viestiä. Ensimmäinen on perillä 2047 ja toinen keväällä 2049.

Jälkimmäinen viesti lähetettiin myös "Manalaan", sillä sen neljännen planeetan mahdollisilla kuilla voisi periaatteessa olla elämää. Viesti tupsahtaa perille vuonna 2044.

Epätodennäköisiä vastauksia näihin viesteihin saammekin sitten odotella ainakn vuosisadan loppuun.

Ethän kuitenkaan odota äänestämistä noin kauaa? Linkkejä klikkaamalla pääsee varmistamaan, että suomalaisnimet ikuistetaan taivaalle! Rekisteröitymistä ei tarvita, jokaisen tähden nimeä voi äänestää yhdestä IP-osoitteesta vain kertaalleen.

Päivitys klo 14: Lisätty tieto toisesta suomalaisehdotuksesta jälkimmäiselle tähdelle.

Gaia aloittaa työt

NGC1818 Gaian kuvaamana
NGC1818 Gaian kuvaamana

Joulun alla avaruuteen laukaistu ja tammikuun alussa havaintopaikalleen Lagrangen pisteeseen 2 päässyt Euroopan avaruusjärjestön tähtikartoittaja Gaia on osoittanut olevansa toimintakunnossa. 

Sen havaintolaitteita on säädetty ja kalibroitu, ja yllä on eräs viimeisimmistä testikuvista: siinä on Suuressa Magellanin pilvessä oleva nuori tähtijoukko NGC1818. Kuvassa pohjoinen on kuvassa ylhäällä ja itä vasemmalla, kuvan leveys on alle asteen kymmenesosa.

Gaia on siis erittäin hyvässä kunnossa ja aloittaa pian rutiininomaiset havaintonsa. Tämä tarkoittaa pitkään valmistellun työrupeaman alkamista myös tähtitieteilijöille, jotka kästtelevät havaintoja lähes reaaliajassa. Eräs näistä käsittelypaikoista on Helsingin yliopiston fysiikan laitoksella, tähtitieteen professori Karri Muinosen työryhmässä. Heidän kiikarissaan ovat asteroidit.

Gaian urakkana on tuottaa viiden vuoden ajan uutta tietoa galaksimme rakenteesta, muodostumisesta ja kehityksestä. Sen avulla määritellään yli miljardin tähden tarkka sijainti ja etäisyys toisistaan. Tämä on noin prosentti Linnunradan tähdistä.

Odotettavissa on tähän asti kattavin ja tarkin kolmiulotteinen kartta Linnunradasta. Kartan julkaisua saa kuitenkin odottaa vuoteen 2022, sillä kuvaamisen jälkeen havaintoaineiston käsittely vie vielä hyvän aikaa.

Gaia katselee aurinkokuntaa 1,5 miljoonan kilometrin päässä Maasta, niin sanotussa L2-pisteessä. Sieltä se pystyy havaitsemaan maanpäällisiä teleskooppeja paremmin mm.  aiemmin havaitsemattomia kohteita, esimerkiksi uusia asteroideja. Niitä odotetaan löytyvän tuhansia. Lisäksi Gaia voi löytää toisia tähtiä kiertäviä planeettoja, jopa kokonaisia planeettakuntia.

Helsinki huolehtii asteroideista

Helsingin yliopiston fysiikan laitos vastaa Gaian löytämien tunnistamattomien asteroidien alustavasta radanmäärityksestä.

"Gaia havainnoi yli 300 000 Aurinkokunnan asteroidia", Muinonen kertoo. "Viiden vuoden aikana kertyneestä havaintoaineistosta voidaan johtaa muoto- ja pyörimismalleja vähintään kymmenille tuhansille asteroideille. Massoja voidaan johtaa vähintään sadoille asteroideille, ja havainnoitujen asteroidien radat voidaan ennustaa tarkasti satakunta vuotta eteenpäin.#

Radanmäärityksen jälkeen lähiasteroideja jamuita erityisen kiinnostavia kohteita voidaan seurata kaukoputkilla maan päällä.

Tiedetuubin Gaia-artikkelit ovat kaikki osoitteessa www.tiedetuubi.fi/gaia ja joulukuussa julkaistu Karri Muinosen haastattelu on täällä.

Tämä artikkeli perustuu Helsingin Yliopiston tiedotteeseen Tulossa on tarkka kolmiulotteinen maisema Linnunradasta.

Alla on ESAn julkaisema video Gaian tiestä taivaalle – kokoonpanosta rakettiin ja sillä avaruuteen, kaikki nopeutettuna:

Gaia taivaalla ja taskussasi

Gaian mobiilisovellus
Gaian mobiilisovellus
Gaian lämpösuojakerrosta

Vuosi sitten avaruuteen laukaistu ESAn Gaia-teleskoopi on laite, joka kartoittaa taivasta huiman tarkasti. Tarkoituksena on muun muassa koota Linnunradasta ainutlaatuinen kolmiulotteinen kartta, mutta lisäksi Gaia havaitsee paljon muuta, kuten muita tähtiä kiertäviä planeettoja , ruskeita kääpiöitä, oman galaksimme ulkopuolella olevia kohteita sekä lähellä, aurinkokunnassa olevia pienkappaleita.

Gaian työtä ja sen havaintomaailmaa voi seurata kätevästi älypuhelimille tehdyllä sovelluksella. Barcelonan yliopiston tekemä sovellusohjelma näyttää paitsi kauniita kuvia ja interaktiivisia diagrammeja, niin myös kertoo Gaiasta, sen matkasta havaintopaikalleen ja siitä miten sen tekee työtään.

Sovellus kertoo myös ajantasaista tietoa siitä mitä Gaia on tekemässä ja kuinka paljon tietoa se on kerännyt. Myös kaikki uudet löydöt tulevat näkyviin puhelimeesi.

Sovellus katsoo lisäksi menneeseen: se kertoo Hipparcos-satelliitista, Gaian edeltäjästä, joka keräsi havaintoja 120 000 tähdestä ja muusta taivaalla olevasta kohteesta. Näistä on koottu suuri, tähtitieteilijöiden aktiivisesti käyttämä taivaan kartasto. Gaian havainnoista tullaan tekemään uusi, moninkertaisesti parempi ja laajempi kartasto, jonka ensimmäinen osa on tarkoitus julkistaa kesällä 2016.

Gaia havaitsee arvion mukaan viisi vuotta kestämään suunnitellun havaintorupeamansa aikana noin miljardia kohdetta – tämä vastaa noin petatavua tietoa (miljoona gigatavua). Tiedot käy läpi Gaian eri maissa ja eri tutkimuslaitoksissa oleva tietojenkäsittely ja -analyysiyhteistö, johon kuuluu myös Helsingin yliopiston tähtitieteilijäryhmä. Suomalaisten vastuualueena ovat havainnoista löytyvät aurinkokunnan pienkappaleet, eli uudet asteroidit ja komeetat.

Toistaiseksi ilmainen Gaia-app on saatavissa vain iOS- ja Android-käyttöjärjestelmille. Lähiaikoina sovellukseen ollaan vielä lisäämässä materiaalia. Sovelluksen tekemisen rahoittivat yhdessä Espanjan tieteellistekninen säätiö sekä Espanjan talous- ja kilpailukykyministeriö. Niinpä englannin lisäksi sovelluksen kielet ovat espanja ja katalaani.

Gaia-app on ladattavissa iTunesista ja Google Playsta.

Gaian lämpösuojakerrosta

Jäätä ja hajavaloa

Gaia laukaistiin avaruuteen tasan vuosi sitten, 19. joulukuuta 2013, ja se aloitti tieteellisen työnsä 25. heinäkuuta, eli hieman myöhemmin kuin oli tarkoitus. Syynä viivästymiseen oli satelliitin sisällä ollut vesihöyry; normaalisti kaikissa avaruuslaitteissa on sisällä ilmaa, joka laukaisun aikana ja avaruudessa pihisee siitä ulos tätä varten tehtyjä tiehyeitä pitkin. Tähtitieteellisissä havaintolaitteissa, joissa on herkkää optiikkaa, tähän on kiinnitetty erityistä huomiota, koska ilmassa oleva vesihöyry tiivistyy jääksi muun muassa peileihin. Siksi Gaiankin peileissä on sähkövastukset, joilla niitä voidaan lämmittää ja siten jäästä voidaan päästä vähitellen eroon. 

Gaiassa vesihöyryä oli jostain syystä enemmän kuin oletettiin, joten vesihöyryn härmistyminen jääksi peilien päälle oli ongelma. Tämä saatiin hallintaan ajan myötä ja erityisillä kikoilla, joilla satelliitin sisälle jäänyttä ylimääräistä ilmaa puolipakotettiin ulos avaruuteen.

Lisäksi Gaialla oli – ja on edelleen – toinen ongelma: sen optiikkaan pääsee ylimääräistä valoa. Valoa ei tule paljon, ja sen määrä vaihtelee Gaian asennosta ja Auringon suunnasta riippuen. 

Hajavalo ei haittaa havaintojen määrää, mutta vaikuttaa sen tekemien havaintojen laatuun. Kirkkaiden kohteiden tutkimista hajavalo ei haittaa paljoakaan, mutta himmeämpien tähtien kohdalla ero on merkittävä. Eniten tästä kärsivät spektrometriset havainnot, joiden avulla määritetään tähtien liikkumisnopeutta. Mikäli Gaia pystyy jatkamaan havaintojaan suunniteltua pitempään, saadaan silloin enemmän havaintoja erilaisissa hajavalotilanteissa, ja siten tulokset ovat parempia.

Joka tapauksessa Gaian mittaukset ovat nytkin paljon aiempia parempia, joten vaikka Gaia-lentoon osallistuvat tähtitieteilijät ovat hieman pettyneitä, saavat he käsiinsä päivittäin ainutlaatuista havaintomateriaalia.

Tarina Gaian logon taustalla

Gaia-piirros
Gaia-piirros

Satelliitteja avaruuteen kuljettavien kantorakettien kyljessä on lähes aina satelliitin logo tai jokin siihen liittyvä kuva. Niinpä ESAn Gaia-satelliittia varten piti myös suunnitella sellainen.

Periaatteessa sen tekeminen oli helppoa, sillä kaikki halusivat siihen olennaiset asiat tästä tähtitaivasta kartoittavasta tekeskoopista: tähtiä, maapallon, Gaian itsensä ja jumalatar Gaian ja luonnollisesti Gaia-nimen kirjoitettuna. Mutta lisäksi siihen piti saada jotenkin ilmennettyä ihmiskunnan kiinnostus maailmankaikkeutta kohtaan.

Lopulta, monien eri puolelta Eurooppaa olevien projektiin osallistuvien ihmisten syöttämien ideoiden ja ehdotusten jälkeen lopullinen kuva valmistui. Siinä jumalatar Gaia onkin pieni tyttö, joka katsoo ylös tähtiin.

Sen jälkeen kun kuva oli hyväksytty, piti se yksinkertaisesti paikaa 3,5 x 3,5 metriä kooltaan olevalle tarralle, joka kiinnitettiin huolella Sojuz-kantoraketin nokkakartioon.

Nimi "GAIA" oli alun perin lyhenne sanoista Global Astrometric Interferometer for Astrophysics, koska aikomuksena oli laukaista satelliitin mukana vain yksi tähtitaivasta tarkkaileva interferometri. Se korvaantui myöhemmin nykysenkaltaisella havaintolaitteella, joka on huomattavasti monipuolisempi ja parempi, mutta alkuperäinen nimi haluttiin säilyttää.

Yksi syy nimen säilyttämiseen on se, että Gaia on myös kreikkalaisen mytologian jumalatar: itse asiassa alkujumala, joka on useiden jumalten ja titaanien äiti. Hesiodos kertoo teoksessaan Jumalten synty, kuinka Kaaoksen jälkeen syntyi runsaspovinen Gaia. Gaia synnytti itsestään kolme lasta, joiden kunkin kanssa hän sai jälkikasvua: Uranoksen (taivas) kanssa Gaia sai mm. 12 titaania, 3 satakätistä sekä 3 kyklooppia, Pontoksen (meri) kanssa Gaia sai lapsia, joista tuli meren jumalia kun taas Gaian ja Tartaroksen (manala) liitosta puolestaan syntyi Tyfon ja Ekhidna.

Gaia odottaa laukaisuaan

Gaia Kouroussa
Gaia Kouroussa
Gaian teleskooppi
Mitä Gaia näkee?

Tähtikartoittaja Gaia, Euroopan avaruusjärjestön seuraava tiedesatelliitti, on parhaillaan Kouroun avaruuskeskuksessa valmisteltavana laukaisuun. 

Laukaisun piti tapahtua 20. marraskuuta, mutta nyt lokakuun 22. päivänä pidetyssä kokouksessa päätettiin, että laukaisua siirretään alustavan arvion mukaan noin kuukaudella eteenpäin. Satelliitin muutamia osia tullaan vaihtamaan Kouroussa tehtyjen testien perusteella, sillä tutkijat sekä insinöörit haluavat olla varmoja siitä, että Gaia tulee toimimaan moitteetta avaruudessa.

Gaian tiedejohtaja, ESAssa työskentelevä Timo Prusti, ilmoitti asiasta tänään ja lupasi selvittää lykkäykseen johtuneita syitä lähipäivinä, kun laukaisun siirtämisestä aiheutuvat kiire hellittää.

Tällä sivulla seurataan laajemminkin Gaian valmistelua, laukaisua, käyttöönottoa avaruudessa ja ensimmäisiä tuloksia tästä alkaen, Kirjoittajina ovat Prustin lisäksi Gaian tutkijaryhmässä asteroidihavaintoja käsittelevän suomalaisryhmän vetäjä Karri Muinonen sekä ryhmän jäsenet ja Tiedetuubin Jari Mäkinen.

Otsikkokuvassa on jo Gaia testissä Kouroun puhdastilassa, missä Gaian suuri aurinkosuoja avattiin ja suljettiin viimeisen kerran ennen matkaan lähtöä. Tämän testin lisäksi Gaialle tehdään suuri joukko muita testejä, ja joissain näistä on löytynyt jotain. Löytö ei välttämättä ole varsinainen vika, vaan voi olla myös pelkkä epäilys siitä, että kaikki ei ole aivan kuten on suunniteltu.

Huima taivaan kartoittaja

Ensi alkuun kuitenkin tarkempi kuvaus siitä, mikä Gaia on: se on tarkasti tähtien paikkoja taivaalla mittaava avaruuskaukoputki, jonka tekemien havaintojen perusteella tähtitieteilijät tulevat tekemään tarkimman koskaan koostetun kartan taivaasta. Nykytekniikan avulla kartasta tulee kolmiulotteinen malli omasta galaksistamme sekä sen noin tuhannesta miljoonasta tähdestä.

"Monet sanovat, että tähtien kartoittaminen ei ole mitenkään seksikäs aihe, mutta he sanovat niin ennen kuin ovat kuulleetkaan Gaiasta ja siitä, mitä se pystyy tekemään", sanoo Timo Prusti.

"Gaia näkee tähtiä, jotka ovat noin 400 000 kertaa heikompia kuin voimme nähdä paljain silmin. Se pystyy määrittämään niiden sijainnin 24 mikrokaarisekunnin tarkkuudella, eli yhtä tarkasti kuin voisimme nähdä hiuksen noin 1000 kilometrin päästä."

Havaintojen avulla voidaan laskea lähimpien tähtien etäisyydet huimalla 0,001% tarkkuudella. Linnunradan keskustassa noin 30 000 valovuoden päässä olevien tähtien etäisyydet voidaan määrittää noin 20% tarkkuudella, mikä on huima parannus nykyiseen.

"Samalla kun Gaia tarkkailee taivaan tähtiä sekä niiden sijaintia, sijainnin muutosta ja kirkkautta paljon tarkemmin kuin mikään havaintolaite aikaisemmin, se tulee todennäköisesti löytämään satoja tuhansia uusia kohteita, kuten esimerkiksi muita tähtiä kiertäviä planeettoja, niin sanottuja ruskeita kääpiöitä (suutariksi jääneitä tähtiä, joiden massa ei riittänyt sytyttämään niissä energiaa tuottavaa fuusioreaktiota) sekä aurinkokunnassamme olevia pienkappaleita, asteroideja ja komeettoja."

Gaia pystyy myös löytämään tähtiä, jotka ovat itse asiassa olleet aikaisemmin pienemmissä galakseissa, jotka Linnunrata on hotkaissut sisäänsä. Tähtien liikeratojen tarkalla selvittämisellä voidaan myös paikansaa pimeää ainetta, jota ei pysty havaitsemaan suoraan, mutta jota näyttää olevan kaikkialla.

"Vaikka päähuomio onkin omassa Linnunradassamme sekä sen tähdissä, Gaia näkee myös satoja tuhansia muita galakseja", Prusti jatkaa. "Mittaamalla kvasaareita Gaian avulla saadaan myös testattua Einsteinin yleistä suhteellisuusteoriaa paremmin kuin koksaan aiemmin."

Suomalaiset vastaavat Gaian keräämistä asteroidi- ja pienkappaletiedoista. Kun Gaia kartoittaa taivasta automaattisesti, se havaitsee samalla paljon Aurinkokunnassamme olevia kohteita, joiden joukossa tulee olemaan varmasti paljon aiemmin tuntemattomia kohteita. Koska Gaia katselee avaruuteen varsin kaukana avaruudessa, se näkee myös Maan radan sisäpuolelle paikkoihin, mihin maapallolla tai sen ympärillä olevat havaintolaitteet eivät näe.

Näitä kohteita etsitään ja paikannetaan suomalaistekoisella ohjelmistolla. Se on tehty Helsingin yliopiston observatoriossa, missä myös omituiset havainnot käsitellään. Voi siis olla, että tietojen joukosta löytyy myös uusia, mahdollisesti vaarallisiakin pienkappaleita, jotka voisivat törmätä Maahan!

Gaian teleskooppi

ESA on mitannut tähtiä jo aikaisemminkin: Hipparcos -niminen satelliitti kiersi Maata vuosina 1989-1993 ja mittasi noin sadan tuhannen tähden sijainnit. Nyt sen havainnoista tehty kartasto on paras tähtitieteilijöiden käyttämä tähtikartta. Gaia tulee nyt kaksi vuosikymmentä myöhemmin mittaamaan 200 kertaa tarkemmin ja tuottamaan ainakin 10 000 kertaa enemmän tietoa.

Kuukauden matka havaintopaikalle

Gaia laukaistaan matkaan Sojuz-kantoraketilla Ranskan Guyanassa sijaitsevasta Euroopan avaruuslaukaisukeskuksesta marraskuun 20. päivä. Avaruuteen päästyään Gaia ohjataan noin 1,5 miljoonan kilometrin päähän Maasta niin sanottuun Lagrangen pisteeseen numero 2, erääseen Maan luona olevaan alueeseen, missä Maan ja Auringon vetovoimat ovat jotakuinkin saman suuruiset, ja siten siellä oleva alus pysyy jotakuinkin paikallaan.

Tarkalleen ottaen Gaia tulee kiertämään hitaasti tätä gravitaatiotasapainopistettä soikeahkolla radalla, mistä katsottuna sillä on koko ajan erinomainen näkymä ulos aurinkokunnasta ympäröivään avaruuteen ja Aurinko paistaa samalla sen aurinkopaneeleihin. Paneelit on sijoitettu kymmenen metriä halkaisijaltaan olevan suuren aurinkosuojan takapuolelle.

Laukaisun jälkeen kestää noin kuukauden, ennen kuin Gaia on saatu ohjattua havaintopaikalleen 1,5 miljoonan kilometrin päähän. Sen systeemien ja havaintolaitteiden virittäminen aloitetaan kuitenkin jo matkan aikana, joten näin teleskooppi pääsee työhön heti vuoden 2014 alusta - jos kaikki sujuu hyvin.

Mitä Gaia näkee?

Alun perin nimi "GAIA" tuli sen suunniteltua toimintaperiaatetta kuvaavista sanoista Global Astrometric Interferometer for Astrophysics, mutta jo satelliitin kehittämisen alkuvaiheessa päätettiin siitä tehdä hieman erilainen: nyt Gaiassa on kaksi tarkkaa optista kaukoputkea, jotka on suunnattu hieman eri suuntiin.

Kun satelliitti pyörii avaruudessa hitaasti akselinsa ympäri, kuvaavat kaukoputket koko ajan näkymää edessään ja näin vähitellen ne pystyvät kartoittamaan koko taivaanpallon. Sama toistetaan viisivuotiseksi suunnitellun lennon aikana useaan kertaan, jolloin muutokset tähtien sijainneissa kertovat niiden liikkumisesta.

Pelkän taivaalla olevan valopisteen sijainnin kirjaamisen lisäksi Gaia analysoi valoa spektrometreillään: valo pystyy kertomaan muun muassa tähden etääntymisestä tai lähestymisestä. Gaiassa on kaikkiaan kolme erilaista tieteellistä tutkimuslaitetta kummassakin kaukoputkessa.

Gaian ohjaaminen tulee tapahtumaan Euroopan avaruusoperaatiokeskuksesta ESOCista Saksasta, mistä siihen ollaan yhteydessä Cebreroksessa, Espanjassa, ja Australian New Norciassa olevilla suurilla antenneilla. Tiedetoimintoja hallitaan Espanjassa, Madridin luona Villafrancassa olevassa Euroopan Avaruustähtietedekeskuksesta, ESACista.

Havaintoja on käsittelemässä ja analysoimassa suuri joukko tutkijoita (myös Suomesta) ja tämä julkaisee aikanaan yhdessä Gaian tähtikartan kaikkien tähtitieteilijöiden käytettäväksi.