Eksoplaneetan kaasukehän rakenne selvitetty ensi kertaa Toimitus Ti, 18/02/2025 - 20:47
Visualisointi eksoplaneetan kaasukehän kerroksista
Visualisointi eksoplaneetan kaasukehän kerroksista

Tämä on todella jännää ja ainutlaatuista: tutkijat ovat onnistuneet kartoittamaan ensimmäistä kertää kolmiulotteisesti eksoplaneetan kaasukehän rakenteen.

Tylos, eli WASP-121b, on noin 900 valovuoden päässä meistä Peräkeulan tähdistössä sijaitseva eksoplaneetta. 

Se on vähän kuin iso ja kuuma Jupiter, kaasujättiläinen, joka kiertää tähteään niin lähellä, että vuosi siellä kestää vain noin 30 Maan tuntia. Koska planeetta on vuorovesilukittunut tähtensä kanssa, on sen toisella puolella koko ajan kuumaa ja toisella kylmää.

Tutkijaryhmä on onnistunut selvittämään nyt Tyloksen kaasukehän rakenteen kolmiulotteisesti. Kiinnostavinta ovat erityisesti tuulet kaasukehän eri kerroksissa. 

Kyseessä on ensimmäinen kerta, kun eksoplaneetan kaasukehästä on saatu näin yksityiskohtaista tietoa. Aiheesta julkaistiin tänään artikkeli Nature-lehdessä.

"Se, mitä löysimme, oli yllättävää: suihkuvirtaus pyörittää kaasua planeetan päiväntasaajan ympäri, kun taas erillinen virtaus kaasukehän alemmissa kerroksissa siirtää kaasua kuumalta puolelta viileämmälle puolelle", kertoo Julia Victoria Seidel, artikkelin pääkirjoittaja ja tähtitieteilijä Euroopan eteläisessä observatoriossa (ESO) sekä Nizzan observatorion Lagrange-laboratoriossa.

Suihkuvirtaus kattaa puolet planeetasta ja kiihdyttää itsensä huimaan vauhtiin planeetan kuumalla päiväpuolella. 

"Voimakkaimmatkin hurrikaanit Aurinkokunnassamme ovat rauhallisia verrattuna tähän", Seidel toteaa ESO:n tiedotteessa.

Tutkijaryhmä käytti ESO:n VLT-observatorion kaikkia neljää teleskooppia, joiden valo yhdistettiin ESPRESSO-instrumentilla siten, että teleskoopit toimivat kuin yksi, todella suuri havaintolaite. Paitsi että neljän teleskoopin valoa keräävä peilipinta-ala on suuri, niiden välinen etäisyys saa aikaan sen, että kuva on yhtä tarkka kuin olisi koko observatorion kokoisella teleskoopilla.

Samaa tekniikkaa voidaan myöhemmin käyttää myös muiden eksoplaneettojen kaasukehien tutkimiseen.

"VLT:n avulla saatoimme tutkia eksoplaneetan kaasukehää kolmessa eri kerroksessa", sanoo tutkimuksen toinen kirjoittaja Leonardo A. dos Santos, joka toimii Space Telescope Science Institutessa Baltimoreissa, Yhdysvalloissa. 

Kaavio raudan, natrieumin ja vedyn liikkeistä

Tiimi seurasi raudan, natriumin ja vetykaasun liikkeitä kaasukehässä, ja näiden avulla saatiin selvitettyä tuulet syvällä, keskikerroksissa ja pinnnalla. 

Havainnot paljastivat myös titaanin olemassaolon juuri suihkuvirran alapuolella, kuten toisessa tutkimuksessa, joka julkaistiin Astronomy and Astrophysics -lehdessä. Tämä oli myös yllätys, koska  aiemmat havainnot olivat osoittaneet titaanin puuttuvan kaasukehästä kokonaan – sitä ei ole, tai mahdollisestise on piilossa syvällä kaasukehässä.

"Nämä ovat juuri sellaisia havaintoja, joita on hyvin vaikeaa tehdä edelleen avaruusteleskoopeilla. Maanpääliset, suuret havaintolaitteet ovat edelleen hyvin tärkeitä."

VLT:tä suurempi ja parempi Extremely Large Telescope (ELT) on tällä hetkellä rakenteilla Chilen Atacaman autiomaassa. Tutkijat ovat jo etukäteen innoissaan ANDES-havaintolaitteesta, jonka avulla voidaan tehdä tällaisia havaintoja paljon nykyistä paremmin. 

Kiertoradalla tapahtuu kummia: hajoamisia ja putoamisia

Hypoteettisen satelliitin räjähdys Grok-tekoälyn piirtämänä
Hypoteettisen satelliitin räjähdys Grok-tekoälyn piirtämänä

Alas putoavia satelliitteja ja räjähdyksiä kiertoradalla. Nyt avaruudessa tapahtuu paljon, mutta näille on selitys. Tulevaisuudenkuva sen sijaan on huolestuttava.

Viime aikoina taivaalla on tapahtunut paljon muutakin kuin kaunis planeettojen asettuminen jonoon ja revontulinäytelmiä. SpaceX on hilannut uusia Starlink-satelliitteja avaruuteen häkellyttävällä tahdilla. 

Laukaisuita on ollut tähän mennessä 14 eli keskiarvona melkein kaksi viikossa. Lisäksi Falcon 9:t ovat vieneet taivaalle muita satelliitteja ja pari kuulaskeutujaakin, joten SpaceX:n tahti on ollut hurja.

Yhdessä laukaisussa on kyydissä 21 tai 23 Starlink-satelliittia. Näin ollen uusia satelliitteja jo noin 7000-satelliittiseen konstellaatioon on tullut tänä vuonna lähes 300.

Samaan aikaan yhtiö hilaa alas kiertoradalta vanhempia satelliittejaan, joissa on suunnitteluvirhe. Se saattaa saada satelliitin sammumaan, joten yhtiö tuo ne alas tuhoutumaan ilmakehässä niin kauan kuin satelliitit ovat vielä toimintakuntoisia.

SpaceX kertoi nyt helmikuun 12. päivä julkaisemassaan tiedotteessa, että satelliitit ovat ensimmäisiä ensimmäisen sukupolven satelliitteja. Ne laukaistiin avaruuteen vuosina 2019 ja 2020, eikä niitä varmaankaan kukaan jää kaipaamaan, sillä niissä ei ole kirkkautta vähentävää visiiriä ja uudet satelliitit ovat paljon kyvykkäämpiä kuin nämä metusalemit.

Satelliittien rataa pudotetaan vähitellen kuuden kuukauden aikana.

SpaceX:n mukaan Starlink-palvelut eivät kärsi tästä. Tiedote kertoo, että “SpaceX kykenee valmistamaan 55 satelliittia viikolla ja laukaisemaan niitä avaruuteen yli 200 kuukaudessa.”

Starlink-satelliitteja

Uuden sukupolven Starlink-satelliitteja juuri ennen niiden vapauttamista avaruuteen. Kuva: SpaceX.

 

Paitsi Starlink-satelliittien suuri määrä, niin myös hajonneiden satelliittien ja näiden alas ohjattavien satelliittien määrä saa jälleen ajattelemaan avaruuden lennonjohtosysteemiä. Lähiohitusten määrä on lisääntynyt ja törmäysriski kasvaa koko ajan.

Olisi hyvä, jos yhden yhtiön sijaan olisi kansainvälinen organisaatio, jonka tehtävänä olisi paitsi tarkkailla satelliittien ratoja, niin myös jakaa kiertoratoja ja koordinoida radalta toiselle siirtyviä ja alas pudotettavia satelliitteja.

Nykyisessä maailmantilanteessa tällaisen saaminen on kylläkin hankalaa.

Toinen riski, joka putoavista satelliiteista tulee, on niiden tippuminen asutuille alueille tai esimerkiksi lentokoneiden päälle. Starlink-satelliitit, kuten suurin osa muistakin satelliiteista, tuhoutuvat lähes kokonaan ilmakehän tulisessa syleilyssä, mutta eivät aina täysin: pieniä palasia satelliittien tukevatekoisimmista osista putoaa joskus alas Maan pinnalle saakka.

Kun satelliitteja putoaa nyt useammin ja useammin, muodostavat nämä pikku palaset yhä suuremman riskin. Usein lentoliikennettä varoitetaan jo putoavien satelliittien vaara-alueella, mutta ei läheskään aina.

BBC:n uutinen avaruusromun putoamisesta Puolaan

Juuri tämän jutun julkaisun jälkeen SpaceX:n Falcon 9 -raketin osia putosi Puolaan. Onneksi tämä hiilikuituinen tankki ei pudonnut lentokoneen päälle. Kuvakaappaus BBC:n sivuilta.

 

Pitkällä tähtäimellä tämä ei ole kestävää, vaan jossain vaiheessa avaruuteen täytyy perustaa jonkinlaisia kierrätyskeskuksia vanhentuneille satelliiteille. Toivottavasti Starshipit (ja muut isokokoiset, uudelleenkäytettävät raketit?) voisivat rahdata niitä sieltä alas hävitettäväksi.

No, tähän on vielä aikaa. Nyt tärkeintä on vähentää avaruusromun määrää tuomalla satelliitteja ja rakettien ylimpiä osia alas ilmakehässä tuhoutumaan heti, kun niitä ei tarvita.

Jos ne jäävät kiertämään Maata avaruusromuna, niin tuloksena voi olla myös yhden ison romunpalan lisäksi paljon pientä romua. Ajan myötä sammuneetkin satelliitit saattavat räjähtää, kun jatkuva lämpeneminen ja kylmeneminen sekä muut avaruudessa olemisen rasitukset vaikuttavat niihin.

Tässä puolen vuoden aikana on tapahtunut kolme tällaista suuren avaruusromun hajoamista palasiksi.

Ensimmäinen oli 6. syyskuuta 2024, kun Atlas V -raketin Centaur (raketin ylin vaihe) hajosi ainakin kymmeneen osaan. Raketti oli vienyt GOES-17 -satelliitin avaruuteen vuonna 2018 ja ylin vaihe oli jäänyt sen jälkeen hyvin soikealle radalle, jonka ylin piste oli 34 949 km ja alin 7622 km. Satelliitti suuntasi geostationaariradalle, ja siksi ylimmän vaiheen rata ylettyi melkein sinne.

Tällaiselle radalle menevät raketit eivät yleensä pysty tulemaan takaisin ilmakehään ja tuhoutumaan siinä, joten ne niin sanotusti passivoidaan. Polttoaineet päästetään ulos ja akkujen varaus puretaan. Systeemit sammutetaan siten, että rakettivaiheesta ei olisi haittaa myöhemmin.

Centaur

Centaur-rakettivaihe. Kuva: ULA.

 

Mutta Centaurien kanssa on ollut vaikeuksia aikaisemminkin. Samanlaisia tapauksia oli vuonna 2018 ja 2019, jolloin Centaurin passivointi ei ole nähtävästi onnistunut halutusti, ja ne ovat räjähtäneet. Toivottavasti Vulcan-raketeissa käytettävien uusien Centaur-rakettivaiheiden luotettavuus tässä suhteessa on parempi.

Toinenkin tapaus liittyy raketin ylimpään vaiheeseen. Blue Origin -yhtiön uusi New Glenn teki ensilentonsa tammikuun 16. päivänä, ja vaikka raketin ensimmäinen vaihe ei onnistunut palaamaan takaisin Atlantilla olleen lavetin päälle, sen toinen vaihe jatkoi suunnitellusti avaruuteen ja lentoa voi pitää onnistuneena. Jos mukana olisi ollut satelliitti, se olisi päässyt avaruuteen.

Satelliitin sijaan kyydissä oli Blue Ring -niminen laite, eräänlainen pieni avaruushinaaja, joka voi viedä siinä olevia satelliitteja oikeille radoilleen ja myöhemmin myös siirtää sekä huoltaa avaruudessa jo olevia satelliitteja. Tätä ei irrotettu rakettivaiheesta tällä kerralla, koska nyt testattiin lähinnä tietoliikennettä Blue Ringin ja lennonjohdon välillä.

Blue ringBlue Ring avaruudessa piirtäjän hahmottelemana. Tällä kerralla laitetta ei irrotettu raketin ylimmästä vaiheesta. Kuva: Blue Origin.

 

Laukaisun jälkeen ylin vaihe inaktivoitiin, mutta nähtävästi ei kunnolla, sillä helmikuun 10. päivänä se rähähti.

Vaihe oli myös varsin soikealla radalla maapallon ympärillä; korkein piste 19300 km ja matalin 2400 km. Se on sen verran kaukana, että palaset pysyvät avaruudessa harminamme tuhansia vuosia.

Ja näiden välissä, lokakuun 19. päivänä 2024 Intelsat 33E -tietoliikennesatelliitti hajosi palasiksi geostationaariradalla. Tuolla radalla, jolla yksi kierros ympäri maapallon kestää yhden vuorokauden ja siksi siellä olevat satelliitit näyttävät pysyvän paikallaan taivaalla, on paljon sää-, tietoliikenne ja muita satelliitteja, joten romun syntyminen sinne on varsin ikävää.

Kyseessä on Boeing-yhtiön rakentama satelliitti, jonka kanssa samanlainen Intelsat 29E koki myös kovia vuonna 2019. Se menetti asennonsäätökykynsä todennäköisesti työntövoimajärjestelmässä olleen vian vuoksi, ja nytkin kaikki viittaa siihen, että ratahallintaan tarkoitettu rakettimoottori ja siihen liittyvät systeemit olisivat saaneet aikaan uudemmankin Intelsatin hajoamisen osiin. Siis räjähdyksen.

Intelsat 33EPiirros Intelsat 33E -satelliitista. Kuva: Boeing.

Kokonaisuudessa parin satelliitin hajoaminen ei ole iso asia, sillä arvioiden mukaan maapalloa kiertää noin 29 000 avaruusromukappaletta, jotka ovat kooltaan yli 10 cm. Sentin tai yli olevia on noin 670 000 ja millimetriä suurempia yli 170 miljoonaa.

Nämä tapaukset vievät kuitenkin lähemmäksi tilannetta, missä romua tulee yhä lisää ja romunpalaset törmäilevät toisiinsa saaden mahdollisesti aikaan ikävän ketjureaktion. Niin sanotussa Kesslerin syndroomassa lähiavaruus muuttuisi niin vaaralliseksi, että sen käyttö ei onnistuisi enää turvallisesti.

Yksi uhka lisää tähän synkistelyn täyttämään aikaamme…

*

Otsikkokuvassa on Grok2-tekoälyn luoma kuva hypoteettisen satelliitin hajoamisesta avaruudessa.

Teksti on julkaistu myös Ursan blogina.

Juttuun on lisätty kuva ja tieto Puolaan keskiviikkona 19.2. pudonneesta avaruusromun palasesta.

Tiesitkö tämän lumesta?

Lumihiutaleita Israel Perkins Warrenin (1814-1892) piirtämänä
Lumihiutaleita Israel Perkins Warrenin (1814-1892) piirtämänä

Eteläisessä Suomessa on satanut kuivaa pakkaslunta nyt hiihtolomaviikon aluksi. Siksi aloitamme viikon kertomalla pikkutietoa lumihiutaleista.

Lumihiutaleet ovat todella kiehtovia, koska ne kaikki ovat ainutlaatuisia. Niisstä yhdistyvät fysiikka ja kemia luonnonkauneuden kanssa.

Ne syntyvät, kun ilma on tarpeeksi kylmää, yleensä alle -5°C, ja ilmassa oleva vesihöyry pääsee jäätymään pienen pölyhiukkasen tai tai muun mikroskooppisen, ilmassa olevan hitusen ympärille. 

Kun vesihöyry alkaa kiteytyä sen pinnalle, lumihiutale kasvaa samalla pudoten alaspäin. Riippuen siitä, miten kasvava hiutale kulkee eri lämpötila- ja kosteusvyöhykkeiden läpi, hiutale kasvaa hieman eri tavalla.

Yleistäen lähellä nollaa olevissa lämpötiloissa syntyy yksinkertaisia neulamaisia muotoja. Hieman kylmemmässä, välillä jotakuinkin -5 °C – -10 °C, syntyy enemmän haarautuvia, tähtimäisiä lumikiteitä. Sitä kylmemmässä tulee enemmän levymäisiä ja lopulta alle -15 °C:n pakkasessa syntyvät kauneimmat, monimutkaiset ja haarautuneet lumihiutaleet.

Ainakin tänään Helsingissä satavat hiutaleet ovat sterotyyppisen tähtimäisiä. Todella kauniita. 

Lumihiutaleiden muoto johtuu siitä, että jäätyvät vesimolekyylit asettuvat kuusikulmaiseen eli heksagonaaliseen hilarakenteeseen. Tämä veden sisältämän vedyn sidoksista kumpuava kuusikulmaisuus näkyy lumihiutaleen rakenteessa, niin yksinkertaisissa jäälaatoissa kuin isosakaraisissa hiutaleissa. Kolmio- ja prismamaiset muodot ovat yksinkertaistuksia kuusikulmaisuudesta.

Koska lumihiutaleet ovat jäätä, ja valo kulkee helposti jään läpi samaan tapaan kuin lasikappaleen läpi, saa lumihiutaleiden muoto aikaan valon hajoamista, heijastumista ja sirontaa. Tämä valosekamelska saa aikaan sen, että lumi näyttää valkoiselta. 

Jokainen lumihiutale on ainutlaatuinen, koska jokainen syntyy hieman eri tavalla. Lämpötila, kosteus, paine ja putoamisreitti vaikuttavat siihen, miten vesihöyry kiteytyy jääksi. 

Lumihiutaleet ovat yleensä koontaan muutamia millimetrejä, 1–5 mm, mutta hyvissä olosuhteissa voi syntyä myös parin sentin kokoisia "jalkarättejä". 

Guinnessin ennätysten kirjan perusteella suurin tietoon tullut lumihiutale oli 38 cm leveä. Se  havaittiin vuonna 1887 Fort Keoghissa, Montanassa, Yhdysvalloissa, mutta koska tätä ei ole dokumentoitu tarkasti, voi tämä jättilumihiutale olla myös tarua. 

Lumihiutaleita on ihailtu ja ihmetelty kautta aikain, mutta (tiettävästi) ensimmäisen tieteellisen katsauksen niihin teki Wilson Bentley (1865–1931). Hän kuvasi tuhansia lumihiutaleita mikroskoopilla.

Japanilainen Ukichiro Nakaya luokitteli lumihiutaleita niiden muodon perusteella ja teki ensimmäisen lumihiutaleiden muotodiagrammin, jonka avulla voidaan selittää hiutaleiden muodostumista ilmakehän eri olosuhteissa.

Otsikkokuvassa on amerikkalaisen Israel Perkins Warrenin (1814–1892) piirroksia lumihiutaleista.

Suomessa lumihiutaletutkimusta ovat tehneet mm. Annakaisa von Lerber ja Jani Tyynelä. 

Nykyisin lumihiutaleiden muodostuminen voidaan mallintaa kvanttifysiikan avulla; lumihiutaleet auttavat puolestaan ymmärtämään kiteiden kasvua ja itseorganisoitumista.

Merenalainen lasisilmä havaitsi superäreän neutriinon Jari Mäkinen To, 13/02/2025 - 21:17
Isolta lasista, teräksestä ja kullasta tehdyltä korulta näyttävä KM3NeT-neutrinoilmaisin
Isolta lasista, teräksestä ja kullasta tehdyltä korulta näyttävä KM3NeT-neutrinoilmaisin

Välimeressä sijaitseva  KM3NeT-teleskooppi on havainnut neutriinon, jonka energia on kolmekymmentä kertaa suurempi kuin mitä on aiemmin havaittu. Arvoitukselliset avaruudesta tulevat neutriinot ovat nyt entistäkin arvoituksellisempia.

Neutriinot ovat omituisia avaruuden vipeltäjiä. Ne vuorovaikuttavat erittäin huonosti tavallisen aineen kanssa, minkä vuoksi niitä on erittäin vaikeaa havaita.

Niitä kutsutaankin haamuhiukkasiksi, vaikka niitä on valtavasti: Noin 65 miljardia neutriinoa kulkee joka sekunti jokaisen neliösenttimetrin läpi Maan pinnalla, myös sinun lävitsesi.

Neutriinon massa on miljoona kertaa pienempi kuin elektronin, ja niitä syntyy koko ajan ällistyttävän paljon Auringossa, muissa tähdissä, supernovaräjähdyksissä ja erilaisissa avaruuden suurienergisissä tapahtumissa. Myös kaikista tapahtumista järein, big bang, synnytti neutriinoita, jota haahuilevat edelleen maailmankaikkeudessa.

Kosmiset säteet tuottavat myös neutrinoita ilmakehän molekyyleihin osuessaan.

Koska neutrinoita on hankalaa havaita, ovat neutriino-observatoriot varsin omalaatuisia. 

Nyt ennätyksellisen neutriinon havainnut laitteisto on nimeltään KM3NeT (Cubic Kilometre Neutrino Telescope) eli "kuutiokilometrin kokoinen neutriinoteleskooppi". Siinä on yli 5600 herkkää valoilmaisinta, jotka on sijoitettu 2500 – 3500 metrin syvyyteen Välimereen kahteen paikkaan lähellä Toulonia Ranskassa ja Sisiliaa Italiassa.

Yksi valoilmaisinpallo

KM3NeT koostuu tällaisista palloista, joiden sisällä on otsikkokuvassa olevia pienempiä palloja, joiden sisällä valoilmaisimet ovat. KM3NeT on italialais-ranskalais-alankomaalainen yhteishanke. Kuva: KM3NeT-kollaboraatio. Otsikkokuva: Jari Mäkinen.

Piirros palloista meressä

Pallot ovat meressä kaapeleissa, jotka kulkevat ankkurista kellukkeeseen. Piirros: KM3NeT-kollaboraatio.

 

Teleskooppi toimii siten, että se havaitsee valoilmaisimillaan ns. Tšerenkovin valoa. Kun neutriino törmää vesimolekyyliin, se synnyttää hiukkasia, jotka liikkuvat nopeammin kuin valo vedessä. Tämä aiheuttaa sinisen valon väläytyksen, jota kutsutaan Tšerenkovin valoksi.

Kyllä, luit oikein: hiukkaset liikkuvat valoa nopeammin. Vaikka mikään ei voi liikkua tyhjiössä valoa nopeammin, ei tilanne ole sama vedessä, missä vesi saa aikaan sen, että valon nopeus on 1,33 kertaa hitaampi kuin tyhjiössä. Väliaine, eli vesi, ei vaikuta kuitenkaan hiukkasten nopeuteen.

Valoilmaisimet havaitsevat näitä heikkoja ja harvoja sinisen valon välähdyksiä, ja kun ilmaisimia on paljon laajalla alueella, voidaan niiden avulla nähdä hiukkasen rata kolmiulotteisesti. Merten syvyyksissä on säkkipimeää, joten valontuikahdukset näkyvät hyvin.

Kun havaintoja analysoidaan tietokoneella, voidaan päätellä neutriinon alkuperä ja energia.

Neutriinon reitti

Piirros neutriinon radasta ja siitä, miten sen reitti voidaan saada selville. Koska neutriinot kulkevat myös maapallon läpi kuin tyhjää vain, niitä tulee teleskooppiin joka puolelta, myös alapuolelta. Piirros: KM3NeT-kollaboraatio.

 

30 kertaa aiempaa äreämpi neutriino

Eilen 12. helmikuuta 2025 julkaistiin Naturessa artikkeli, jossa KM3NeT-kollaboraatio kertoo havainneensa suurienergisimmän koskaan havaitun neutriinon.

Neutriinon energia on noin 220 petaelektronivolttia (PeV), eli kolmekymmentä kertaa suurempi kuin aiemmin havaitut. Kysymys kuuluukin: missä ja millaisessa prosessissa ultrakorkeaenerginen neutriino voi syntyä? 

Mustien aukkojen törmäys? Haamu maailmankaikkeuden synnystä?

Ennätysneutriinohavainto

 

Yhden havainnon perusteella on vaikea tehdä vielä johtopäätöksiä, mutta nyt tutkijat osaavat kiinnittää paremmin huomiota aivan uuden energiatason neutriinoihin ja toivoa, että niitä saadaan haaviin lisää. 

Tässä auttaa myös se, että KM3NeT ei ole vielä täysin valmis. Siihen lisätään enemmän valoilmaisimia, ja se on lopullisessa muodossaan vasta vuonna 2030.

*

Uutisen lähteenä on Ranskan kansallisen tutkimuskeskuksen CNRS:n tiedote. 

Vaihda eurooppalaiseen tekoälyavustajaan: tässä tulee Le Chat Jari Mäkinen Ke, 12/02/2025 - 16:34
Mistral AI Le Chat -logot
Mistral AI Le Chat -logot

Pariisissa pidettiin 10.-11. helmikuuta tekoälyä koskeva suuri kokoontuminen Ranskan presidentti Emmanuel Macronin aloitteesta. Maailmanpoliittisesta tilanteesta johtuen tilaisuuden poliittinen taso kääntyi enemmän muuhun asiaan kuin tekoälyyn, mutta kulisseissa ja oheistapahtumissa käsiteltiin myös asiaa. Kuten uutta ranskalaisen Mistral AI:n kehittämää Le Chat -keskustelumallia, joka toimii myös suomeksi.

Jos internet ja matkapuhelimet olivat suuria mullistuksia 1900-luvun lopussa ja 2000-luvun alussa, niin tekoäly ja sen hyödyntäminen elämän eri alueilla ovat vähintään yhtä suuri mullistus lähiaikoina. 

Koska tekoälyllä on suuria vaikutuksia yhteiskuntiimme ja elämään joka puolella, päätti suureellisista aloitteistaan tunnettu Ranskan presidentti Emmanuel Macron järjestää suuren tekoälyä käsittelevän kokousten sarjan Pariisissa. IA Action Summit pidettiin nyt helmikuun 10. ja 11. päivinä.

Suuri määrä alan asiantuntijoita ja vaikuttajia kerääntyi keskustelemaan tekoälystä eri näkökulmista. 

Kirjoittaja oli mukana seuraamassa tapahtumaa ja keskittyi enemmänkin tekoälyn käyttöön sotilassovelluksissa, koska siellä tapahtuu suurta kehitystä ja sotilastekniikka on valitettavasti nykyisin erittäin ajankohtaista. Tähän palataan erillisessä jutussa lähipäivinä.

Tässä jutussa sen sijaan aiheena on uusi ranskalainen kielimalli Le Chat.

Luotettava kielimalli?

Tekoälyä ovat monenlaiset järjestelmät ja ohjelmistot, jotka pystyvät suorittamaan tehtäviä, jotka normaalisti vaatisivat ihmisen älykkyyttä. Esimerkiksi oppiminen, ongelmanratkaisu, päätöksenteko, kielen ymmärtäminen, kuvien tunnistaminen ja monimutkaiset analyysit ovat tällaisia.

Osa sovelluksista on rajattuja tehtäviä suorittavia algoritmeja, osa taas julkisuudessa paljon olleita kielimalleja, joiden kanssa voi keskustella. Ne pystyvät yhdistämään suuresta tietomäärästä vastauksia monenlaisiin kysymyksiin ja reagoivat käyttäjän kysymyksiin myös lähes tunteellisestikin.

Tällaisia ovat mm. GPT, DeepMind, Gemini, Grok ja DeepSeek.

Kielimallit eivät ole aivan samanlaisia, johtuen niiden "kouluttamisesta", niiden käytössä olevasta tiedosta ja tietoisesti kielimalliin ohjelmoiduista painotuksista. Esimerkiksi kiinalainen DeepSeek selvästi sensuroi Kiinan kannalta ikäviä asioita ja yhdysvaltalaisilla kielimalleilla on omia painotuksiaan – sekä ennen kaikkea nykyisessä tilanteessa poliittista painolastia.

Tähän saakka Eurooppa on ollut jälkijunassa, etenkin yleisesti käytettävien kielimallien kehityksessä. 

Eräitä johtavista ovat suomalainen Silo AI ja saksalainen Aleph Alpha, jotka ovat yhteistyössä ranskalaisen Mistral AI:n kanssa. 

Näiden tietotaitoa lieneekin mukana vast'ikään esitellyssä Le Chat -kielimallissa, joka on yleisön normaalisti käytettävissä ChatGBT:n ja Grokin tapaan.

Le Chat on sanaleikki, missä yhdistyvät ranskan sana "kissa" ja keskustelu (chat). 

Le Chat esittelee itsensä suomeksi

Le Chat onkin kiinnostava, koska se on eurooppalainen ja sitä voi käyttää myös suomeksi. Yllä on sen vastaus suomenkieliseen kysymykseen, ja vastaus kertoo myös Le Chatin suurimman heikkouden: se ei toistaiseksi louhi tietoa netistä, eikä ole selvillä aivan ajankohtaisimmista tapahtumista.

Sen sijaan yleisiä asioita ja ennen loppuvuotta 2023 olleita tapahtumia se tuntee erinomaisesti.

Erityistä Le Chatissa on sen nopeus; sen käyttämisen jälkeen Grok ja ChatGPT tuntuvat todellakin hitailta. Le Chat onkin suunniteltu tehokkaaksi, energiatehokkaaksi ja skaalautuvaksi.

Sitä kannattaa testata! Kuten muissakin kielimalleissa, tarjolla on ilmaisen version lisäksi tehokkaampi ja vastausmäärältään rajoittamaton Pro-versio.

Mistral AI:n perustivat Metan ja Googlen tekoälykehittäjinä kokemusta keränneet Arthur Mensch, Guillaume Lample ja Timothee Lacroix huhtikuussa 2023. Yhtiö käyttää - ainakin toistaiseksi - avointa lähdekoodia, vaikka tätä on arvosteltu sen haavoittuvuudesta.

Kesäkuussa 2024 Mistral AI keräsi rahoitusta 600 miljoonan euron edestä ja nyt sen arvoksi lasketaan noin 5,8 miljardia euroa. Se onkin Euroopan arvokkain tekoäly-startup.

Yhtiö on läheisessä yhteistyössä mm. Microsoftin ja Dassault Systèmesin kanssa. Mistralin kielimallia käytetään mm. Microsoftin Azure AI -alustalla ja Microsoft on hankkinut pienen osuuden yhtiöstä. Dassault Systèmes, ranskalainen ilmailu- ja avaruusalalla toimivan Dassaultin sisaryhtiö on keskittynyt teollisuudessa käytettäviin ohjelmistoihin, kuten CATIA CAD-ohjelmistoon, ja yhdistää Mistralin kielimalleja mm. virtuaalisiin kaksoisratkaisuihin ja pilvi-infrastruktuuriin.

Ei ihme, että Pariisin IA Summitissa Mistral AI nousi selvästi esiin ranskalaisena ja eurooppalaisena vaihtoehtona amerikkalaisille ja kiinalaisille tekoäly-yrityksille.

Huomio kääntyi politiikkaan

Mukana kokouksessa oli myös presidenttejä, pääministereitä ja muita valtiojohtajia. Myös Suomen pääministeri Petteri Orpo kutsuttiin mukaan. Hän sai myös kunnian puhua valtionpäiden tapaamisen päätösseremoniassa.

Orpo Pariisissa

Orpo osallistui kokouksen yhteydessä myös presidentti Macronin kutsusta EU-johtajien työillalliselle sekä valtioiden- ja hallitusten johtajien illalliselle. Mukana oli noin 25 valtionjohtajaa eri puolilta maailmaa, muun muassa Yhdysvaltain uusi varapresidentti James Vance.

Maailmanpolitiikan myllerryksistä johtuen heidän välillään puhuttiinkin enemmän muusta kuin tekoälystä. 

AI Action Summitin päätteeksi hyväksyttiin julistus, jossa myös Suomi on mukana. Julistus linjaa maakoalition yhteistyötä muun muassa ilmasto- ja ympäristökestävän tekoälyn edistämiseksi. 

Känny kiinni sunnuntaisin Toimitus Ke, 12/02/2025 - 10:56
Shut the phone up Sunday -logo
Shut the phone up Sunday -logo

Nokia-merkin alla matkapuhelimia myyvä HMD kertoo myyntinsä olevan huimassa kasvussa: "vanhanaikaisille" perusmatkapuhelimille on yhä enemmän kysyntää, ja etenkin nuoret haluavat niitä multimediaälypuhelinhärpäkkeiden sijaan.

Suomalainen Human Mobile Devices on yhtiö, joka on tuonut ammoisten Nokia-puhelimien näköiset- ja kaltaiset matkapuhelimet jälleen markkinoille. Yhtiä kertoo suuntaavansa katseensa henkilöihin, jotka tuntevat digitaalisen ylikuormituksen haitat ja pitävät tarkasti silmällä budjettiaan. Puhelimet tarjoavat mahdollisuuden olla saavutettavissa ja pitää lomaa älypuhelimien helposti tarjoavasta digiähkystä.

Kysyntää näille näyttää olevan, sillä HMD:n tuoreen tiedotteen mukaan näppäinpuhelimien myynti on kasvanut merkittävästi kahden viimeisen vuoden aikana eri puolilla maailmaa. HMD:n myynti on kasvanut kaksinumeroisen luvun verran jo kahtena  vuonna peräkkäin.

HMD:n Nokia-puhelimia

Tiedote kertoo, että kasvu on seurausta Yhdysvalloissa vuonna 2023 alkaneesta kulttuurisesta muutoksesta, jossa erityisesti Z-sukupolvi on alkanut peräänkuuluttaa yksinkertaisempia, häiriötekijöistä vapaita laitteita. 

TikTok-hashtag #bringbackfliphones on kerännyt jopa 61 miljoonaa katselukertaa, mikä korostaa kasvavaa tarvetta irrottautua älypuhelimista.

Nyt yhtiö on tuomassa myyntiin HMD BarbieTM -simpikkapuhelimen, joka perustuu vuonna 2023 esiteltyyn Nokia 2660 Flip -puhelimeen. Juuri värikkäät, yksinkertaiset simpukkapuhelimet näyttävät olevan hip ja pop.

HMD:n puhelimien suosio on selvä merkki siitä, että kuluttajat kaipaavat yksinkertaisempia puhelimia. 

Maailman myllerrykset ovat omiaan lisäämään kiinnostusta sulkea suuri osa uutisista ja notifikaatioista ulkopuolelle – ainakin osittain.

Yhtiö on nyt esitellyt (myynnin lisäys tietysti mielessään) "Shut the phone up Sundayn", eli "Sulje känny sunnuntaiksi" -kampanjan, joka nimensä mukaisesti ehdottaa jättämään älypuhelimet sivuun ainakin yhdeksi päiväksi. Kampanjaan liittyy myös alennuksia tuotteista.

Kun tiedetään, että jatkuva älypuhelimien käyttö syö huomaamatta ihmisen kognitiivista kapasiteettia ja vähentää keskittymiskykyä, Tiedetuubi suosittelee samaa.

Eksokomeettojen kavalkadi

Kuva: Luca Matra
Kuva: Luca Matra

Muita tähtiä kiertävien komeettojen eli eksokomeettojen havaitseminen on vielä vaikeampaa kuin eksoplaneettojen. Silti se on mahdollista.

Yksittäiset komeetat eivät kuitenkaan erotu kymmenien tai satojen valovuosien etäisyydeltä. Komeettojen kokoluokka on – ainakin Aurinkokunnassa – vain kilometrejä tai korkeintaan joitakin kymmeniä kilometrejä, ja useiden, jopa kymmenien tuhansien kilometrien läpimittaisten planeettojenkin tutkiminen on haastavaa.

CfA:n (Harvard & Smithsonian Center for Astrophysics) tähtitieteilijät ovat tehneet havaintoja kokonaisista komeettavyöhykkeistä, muita tähtiä ympäröivistä ainekiekoista, jotka koostuvat komeettamaisista kappaleista. 

Vastikään Astronomy & Astrophysics -tiedelehdessä julkaistussa artikkelissa on listattu kaikkiaan 74 suhteellisen läheistä tähteä, joiden ympärillä on ”komeettakiekko”.

Havainnot on tehty Havaijilla sijaitsevalla Submillimeter Array -radioteleskooppiverkostolla (SMA) ja Chilessä Atacaman autiomaahan levittäytyvällä ALMA-järjestelmällä (Atacama Large Millimeter/submillimeter Array).

Tutkimuksen kohteina olleet tähdet vaihtelevat iältään hyvin nuorista jokseenkin Auringon ikäisiin, miljardeja vuosia vanhoihin tähtiin. Ikähaitari antaa edustavan kuvan siitä, miten komeettavyöhykkeiden synty kytkeytyy planeettakuntien kehittymiseen.   

Radioalueella tehdyt havainnot kertovat, miten joidenkin kilometrien läpimittaisten toisiinsa törmäilevien kiven ja jään muodostamien kappaleiden keskinäiset kolarit levittävät ainetta tähden ympärille.

Myös Aurinkokunnan ulko-osissa on vastaavanlainen kiekko, joka tunnetaan Kuiperin vyöhykkeenä. Se ulottuu suunnilleen Neptunuksen radan tienoilta eli 30 tähtitieteellisen yksikön etäisyydeltä noin 50 tähtitieteellisen yksikön päähän Auringosta.

Vielä sitäkin kauempana on pallomainen Öpikin-Oortin pilvi, joka saattaa ulottua jopa 100 000 tähtitieteellisen yksikön etäisyydelle. Siitä ei ole suoria havaintoja, vaan oletus sen olemassaolosta perustuu komeettaratojen ominaisuuksiin. 

Tilastollisesti näyttää siltä, että samankaltaisia komeettavyöhykkeitä ja -pilviä löytyy vähintään joka viidennestä planeettajärjestelmästä. 

 

 

 

 

 

 

 

 

 

Fossiilit kävivät avaruudessa

Avaruudessa käynyt fossiili ja todistus lennosta
Avaruudessa käynyt fossiili ja todistus lennosta

Kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja ammoisen etanan kuori kävivät 105 kilometrin korkeudessa viime elokuussa tehdyllä New Shepard -aluksen avaruushyppäislennolla NS-26. 

Blue Originin New Shepard -raketti ja avaruusalus tekivät edellisen hyppäyslentonsa juuri ja juuri avaruuden puolelle 4. helmikuuta 2025. Kyseessä oli miehittämätön lento, jonka kyydissä oli tutkimuslaitteita.

Kolme lentoa aikaisemmin, elokuun 29. päivänä 2024, oli kyydissä kuitenkin jotain hyvin erikoislaatuista: fossiileita. 

Lennon miehistöön kuului paitsi 21-vuotias Pohjois-Carolinan yliopiston opiskelija Karsen Kitchen, nuorin virallisesti avaruuden puolella käynyt nainen, niin myös Floridan yliopiston proferssori Rob Ferl.

Ferl on geenitutkija, joka on selvitellyt pitkään kiihtyvyyden ja mikropainovoiman vaikutuksia kasveihin.

Hän on ollut Floridan yliopiston professori vuodesta 1980 ja toimii tällä hetkellä UF Astraeus Space Instituten johtajana. Vaikka hän on innokas lentäjä, Ferlillä on kova korkean paikan kammo. Kuten monille korkeanpaikankammoisille lentäjille, ei koneessa oleminen ja lentäminen ole lainkaan haastavaa, mutta varsin absurdit lentämiseen liittyvät asiat saattavat olla: Fern kertoo Floridan yliopiston tiedotteessa, että hänen avaruusmatkansa vaikein osa oli lyhyt kävely laukaisualustalta rakettiin parikymmentä metriä korkealla olevan rampin päällä.

"Olin huolissani siitä, että kävely ramppia pitkin kapseliin saisi minut hermostumaan, ja se oli aika lähellä", Ferl kertoo.

Miehistä laukaisualustalla

NS-26 -lennon osanottajat laukaisualustalla. Ramppi tästä avaruusalukseen oli samanlaista ritilää kuin tässä. Ferl on kuvassa takana keskellä. Kuva: Blue Origin.

 

Ferlillä oli avaruuslennolla näytteenottoputkia, jotka sisälsivät pieniä kasveja ja jotka oli kiinnitetty hänen pukunsa jalkoihinsa tarranauhalla. 

Laukaisun, huippukohdan ja laskeutumisen aikana hän painoi kunkin putken kiinnitettyjä mäntiä, jotka vapauttivat kiinnitysaineen, joka kemiallisesti jäädytti jokaisen kasvin solutasolla. Myöhemmin, kun hän oli palannut Maahan, hän analysoi erot kolmen ryhmän välillä. 

Ferl oli liittynyt mukaan lennolle virallisesti tätä tehtävää tekemään – ensimmäisenä Nasan tukemana tutkijana – mutta luonnollisesti hän oli itsekin innoissan kokemuksesta.

"Kuvittele olevasi merentutkija, joka ei ole koskaan ollut veneessä, tai joku, joka tutkii metsiä mutta ei ole koskaan koskenutkaan puuhun, tai paleontologi, joka ei ole koskaan löytänyt fossiilia. Olen ollut avaruusbiologi 25 vuotta. Nyt olen vihdoin ollut avaruudessa."

Omien näytteidensä lisäksi Ferl halusi jakaa matkansa muiden yliopiston tutkijoiden kanssa.

Siten mukaan pääsi myös kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja pleistoseenikauden jääkausia edeltäneellä ajalla eläneen petoetanan kuorta.

Fossiilit olivat peräisin Floridan luonnonhistoriallisesta museosta. Jon Bloch, selkärankaisten paleontologian kuraattori, ja Roger Portell, selkärangattomien paleontologian kokoelman johtaja valitsivan avaruuskeikalle päässeet fossiilit.

 

Fossiilien piti olla pieniä, mutta Bloch halusi myös jotain merkittävää, ainutlaatuista. Siksi hän rajasi valintansa  selkärankaisten paleontologian kokoelmassa olevien yli 1,5 miljoonan näytteen joukosta lyhyeen, mutta merkittävään vaiheeseen Maan historiassa. 

Paleoseenia seurannut eoseenin ensimmäinen vaihe noin 48 – 56 miljoonaa vuotta sitten oli noin 200 000 vuotta kestänyt globaalin lämpenemisen jakso, joka tunnetaan epätavallisen pienistä eläimistä.

"Se oli intensiivinen aika, joka vastaa sitä, mitä ennustamme nykyiselle ilmastonmuutokselle, paitsi että nyt lämpeneminen tapahtuu paljon nopeammin", hän sanoi.

Maailmanlaajuiset lämpötilat nousivat 5–8 celsiusastetta tämän pari sataa tuhatta vuotta kestäneen termisen häiriön aikana. Jopa 50 % meren mikro-organismeista kuoli sukupuuttoon, kun maailman valtameret happamoituivat. 

Maalla nisäkkäät selvisivät sukupuuttoaallosta vähemmillä menetyksillä, koska evoluutio muokkasi niistä pienempiä. Kun esine kutistuu, sen tilavuus pienenee enemmän kuin sen pinta-ala. Tämä helpottaa pienempien eläinten lämmön haihduttamista verrattuna suurempiin.

Jotkut lajit kutistuivat jopa 30 % alkuperäisestä koostaan eoseenin alkurykäyksen lämpömaksimin aikana. 

Maailman ensimmäinen kädellinen oli Teilhardina, joka olisi mahtunut nykyihmisen kädelle seisomaan. Palanen sellaista piipahti avaruudessa. Kuva: Florida Museum / Jeff Gage.

 

Bloch valitsi mukaan myös varhaisimman tunnetun hevosen Sifrhippus sandraen fossiilipalasen. Hevonen painoi todennäköisesti vain 8,5 kiloa, eli ponikin on siihen verrattuna jättiläinen. Kuva: Florida Museum / Jeff Gage.

 

Portell, joka on paleontologiksi päätynyt ravintolapäällikkö ja pankkiiri, otti hieman erilaisen lähestymistavan fossiilin valinnassa.

"Yritin ajatella jotain avaruuteen liittyvää, kuten tähtikuoria ja kuuetanoita", hän sanoi.

Portell päätyi 2,9 miljoonaa vuotta vanhaan kuuetanaan osittain tämän ryhmän oudon ja kiehtovan luonnonhistorian vuoksi.

 

Fossiileita on ollut aikaisemminkin avaruudessa: pieniä fossiileja lepakoista, useista dinosauruksista, crinoidista, hominidista ja trilobiitista on kiikutettu avaruuteen ja takaisin.

Kyseessä oli kuitenkin ensimmäinen kerta, kun fossiileita oli mukana tällaisella suborbitaalisella hyppäyslennolla juur avaruuden puolelle. Tieteellistä iloa tällaisesta ei ole, mutta muuta iloa sen edestäkin!

Juttu perustuu Museum of Floridan tiedotteeseen ja kuviin.

Loikkia lähiavaruuteen

Härän kohteita. Kuva: MH
Härän kohteita. Kuva: MH

Iltataivasta koristaa tällä hetkellä useita planeettoja, itse asiassa Merkuriusta lukuun ottamatta kaikki Venuksesta Neptunukseen. 

Jos tarkkoja ollaan, myös Merkurius on vastikään siirtynyt aamutaivaalta iltapuolelle, mutta se on vielä niin lähellä Aurinkoa, että sitä on mahdoton nähdä.

Planeetoista Jupiter ja Uranus ovat lähellä kahta avointa tähtijoukkoa, Hyadeja ja Plejadeja. Ne kuuluvat Härän tähdistöön, jossa myös Jupiter viipyilee kesäkuulle saakka. Uranus on niukasti Oinaan puolella, mutta sekin vaeltaa maaliskuun alussa Härkään, missä se pysyttelee aina elokuuhun 2032 saakka.

Yhdellä silmäyksellä voi tarkastella viittä yötaivaan kohdetta, jotka ovat hyvin erilaisilla etäisyyksillä. Tosin Uranuksen silmäily vaatii kiikarin, sillä se erottuu paljain silmin vain huippuhyvissä olosuhteissa. 

Viisikosta lähimpänä on Jupiter, jonka etäisyys Maasta on tällä hetkellä 699 500 000 kilometriä. Uranus on paljon kauempana, sillä kaukaiselle planeetalle on matkaa 2 915 800 000 kilometriä. 

Seuraava loikka on vielä huimempi. Härän tähdistön kirkkain tähti eli Aldebaran on noin 65 valovuoden etäisyydellä. Jos Jupiterin ja Uranuksen etäisyydet muunnetaan valovuosiksi, lukemat ovat 0,00007 ja 0,0003 valovuotta.

Aldebaran on siis yli 200 000 kertaa kauempana kuin Uranus ja melkein miljoona kertaa etäämpänä kuin Jupiter. 

Se ei kuitenkaan ole vielä mitään.  

Hyadien tähtijoukko on yli kaksi kertaa kauempana kuin Aldebaran eli 153 valovuoden etäisyydellä, ja Plejadit puolestaan melkein kolme kertaa kauempana kuin Hyadit. Matkaa joukkoon on 439 valovuotta.  

Jos Plejadien etäisyyttä vertaa Jupiterin etäisyyteen, tähtijoukko on yli kuusi miljoonaa kertaa jättiläisplaneettaa kauempana. 

Ja silloinkin ollaan vasta kosmisessa lähinaapurustossa. 

Uusi moottori sähkölentokoneisiin Jari Mäkinen Su, 09/02/2025 - 13:02
ENGINeUS-moottori
ENGINeUS-moottori

Sähkölentokoneilla on kaksi haastetta: akkutekniikka ja moottori. Akut ovat edelleen varsin painavia suhteessa latauskapasiteettiin, ja ilmailukäyttöön hyväksyttyjä moottoreita on kovin vähän.

Euroopan lentoturvallisuusvirasto (EASA) on myöntänyt sertifikaatin ENGINeUS 100 -moottorille. Kyseessä on ensimmäinen Safran Electrical & Power -yhtiön uusista moottoreista, joita tullaan käyttämään sähkölentokoneissa. 

Moottorin ensimmäinen käyttäjä tulee olemaan Diamond Aircraft eDA40 -koneessaan. Kyseessä on DA40 -konetyypin sähköistetty versio, missä moottorin ja siihen liittyvien systeemien vaihtamisen lisäksi on rungon alle laitettu aerodynaamisesti muotoiltu akkupaketti.

eDA-40 lennossa

Diamond eDA40 koelennolla. Ulkoisesti koneen erottaa polttomoottorilla varustetusta koneesta kookkaasta akkupaketista rungon alapuolella. Kuva: Diamond Aircraft

 

ENGINeUS 100 on ensimmäinen Safran Electrical & Power -yhtiön ENGINeUS-sarjan moottoreista, joita tuottamaan yhtiö on rakentamassa neljä puoliautomatisoitua tuotantolinjaa Niortiin (Ranska) ja Pitstoneen (Iso-Britannia). Niissä valmistetaan yli 1 000 sähkömoottoria vuodessa vuodesta 2026 alkaen. 

Moottoria testattiin laboratorio-olosuhteissa yli 1 500 tuntia ja yli 100 lentotuntia todellisissa olosuhteissa lentokoneella. 

Safranille ja EASAlle kyseessä on tärkeä askel myös siksi, että moottorin sertifioinnin kuluessa on myös määritelty tulevaisuutta varten sähkömoottoreihin sekä niiden systeemeihin liittyvät erityiset lentokelpoisuussäännöt ja suunniteltu menetelmät moottorien arviointiin ja kelpuuttamiseen.

ENGINeUS 100 -sähkömoottori tuottaa maksimissaan 125 kW tehoa, ja sen paino-tehosuhde on 5 kW/kg. Ilmailussa juuri paino-tehosuhte on olennainen.

Moottoripakettiin kuuluu itse sähkömoottorin lisäksi sen virransyöttö- ja ohjausjärjestelmät, jotka on integroitu suoraan moottoriin. Laitteiston muoto ja ilmalla tapahtuva jäähdytys on suunniteltu siten, että sitä voidaan käyttää monissa erilaisissa koneissa ja laitteistolla voidaan myös korvata polttomoottoreita nykyisissä lentokoneissa.

ENGINeUS

Polttomoottoriin verrattuna sähkömoottori on yksinkertainen ja siinä on paljon vähemmän osia. Se on periaatteessa luotettavampi ja vaatii vähemmän huoltoa. Kuva: Safran Electrical & Power

 

Safranin mukaan moottori sopii hyvin ainoaksi moottoriksi pieniin yleisilmailukoneisiin, mutta myös sitä voidaan käyttää suuremmissa ns. hajautetun propulsion lentokoneissa. Euroopassa on useita 19-paikkaisia lentokonehankkeita, joissa on useampi sähkömoottori. 

Ranskalainen Aura Aero on julkistanut käyttävänsä Safranin moottoreita ERA-lähiliikennekoneessaan. Ruotsalainen Heart Aerospace puolestaan ei ole kertonut X1-koekoneessaan käyttämäänsä ja myöhemmässä ES-30-koneessaan olevaa moottoria.

Myös Bye Aerospace, CAE, Electra, TCab Tech ja VoltAero käyttävät koneissaan Safranin uutta moottoria.

ENGINeUS -moottoriperheen myöhemmät versiot voisivat sopia myös tuleviin suurempiin, jopa noin 150-paikkaisiin sähkölentokoneisiin.

Tähän saakka ainoa sähkölentokone markkinoilla on ollut Pipistrel Velis Electro, missä käytetään yhtiön omaa moottoria. Kone ja sen moottori saivat lentokelpoisuustodistuksen toukokuussa 2020. Kävimme koelentämässä koneen vuonna 2021 ja siitä on Tiedetuubissa video.

Siinä missä Velisissä on kaksi paikaa, on eDA40:ssa neljä. Se on Pipistreliin verrattuna suurempi ja pystyy lentämään pitemmälle tai kauemmin. Velis Electron moottoriteho on 57 kW ja eDA40:n ENGINeUS 100 -sähkömoottorin 125 kW. Pipistrelin akkukapasiteetti on 20 kWh, Diamond ei ole ilmoittanut lukua. Kummankin koneen tyypillinen latausaika on noin tunnin.

Pipistrel Velis Electro

Pipistrel Velis Electro latauksessa. Kuva: Jari Mäkinen