Koeajo: BYD Seal U DM-i on järkevä lataushybridi, joka sopii kodin lisäakuksi

BYD Seal U DM-i etuviistosta kuvattuna
BYD Seal U DM-i etuviistosta kuvattuna
Auto etusivusta

Kiinalainen BYD Seal U DM-i on alle 40 tuhannen euron ladattava katumaasturihybridi, jolle luvataan jopa yli 1000 kilometrin toimintamatka. Auto on teknisesti mainio, mutta käytön pienet ongelmat ärsyttävät.

Aforisminkaikuinen autovalmistaja, Build Your Dreams (BYD) tunnetaan Suomessa erityisesti sähköautoista. Heidän Suomen mallistonsa laajeni hiljattain myös lataushybridillä, mallinimeltään Seal U DM-i.  

Hintaansa nähden Seal U DM-i tarjoaa paljon ominaisuuksia ja tekniikkaa, joiden uskoisi tekevän autosta kiinnostavan vaihtoehdon töpselihybridimarkkinoilla. Malliston hinta alkaa 39 500 eurosta, joka on tähän kokoluokkaan houkutteleva hintalappu. Lisähintaa saa halutessaan sisustan ja maalipinnan erikoisvärityksillä, jotka nostavat hintaa maksimissaan 1636,47 euroa. Kymppitonnien lisävarusteita ei siis ole odotettavissa.  

Suurin ongelma BYD:llä lienee olevan, että se on Suomen henkilöautomarkkinoilla vielä uusi tulokas ja kiinalaisvalmistajia kohtaan on epäluuloja. Tämä muistuttaa hieman samanlaiselta tilanteelta, mitä aikoinaan oli korealaisia valmistajia kohtaan.  

Seal U ilman DM-i päätettä on täysin sähköllä toimiva laite, kun taas DM-i -päätteinen malli saa virtaa myös polttomoottorista, joka on valmistajan oma 1,5-litrainen Xiaoyun bensaturbo. 

Maahantuojan mukaan polttomoottori toimii 18,3 kWh akustolle generaattorina eikä suoraan anna renkaille vetovoimaa. Samalla logiikalla toimivat myös muun muassa myös vanhemmat Opel Amperat ja Mitsubishi Outlanderit. 

Kyse on ehkä enemmänkin siis sähköautosta, jossa on bensalla toimiva virtalähde. 

Moottori

 

Ettei kaikki olisi liian selkeää niin huomioksi nostettakoon, että valmistajan mallistosta löytyy myös Seal, joka on täysin eri auto, kuin Seal U tai Seal U DM-i. Tässä nimisotkussa ei ole paljoakaan logiikkaa, mutta eipä nimi autoa pahenna.  

Ulkoa ja sisältä DM-i ei juurikaan eroa täysin sähköisestä Seal U:sta. Ajossa tosin huomaa eron. Siinä missä Seal U:n löllön pehmeä alusta muistutti vesisängyllä ajamisesta niin DM-i on paljon tasapainoisempi, eikä velloa ihan yhtälailla. Pehmeä tämä edelleen kuitenkin on. Seal U tuntuu siltä, että kyseessä lataushybridiksi suunniteltu auto, eikä niinkään sähköautoksi.

DM tulee englannin kielen sanoista dual mode. Perässä oleva i viittaa intelligenceen, eli pohjalaisittain sanottuna ”järkevyyteen”.

Auto takaviistosta

 

Hätävilkkua  

Viikon koeajon aikana DM-i:n raivostuttavin puoli oli se, että auto käytti yhteensä 9 kertaa hätävilkkuja päällä ilman selkeää syytä. Vilkutukset olivat parin sekunnin mittaisia, eikä tapauksissa ollut ainakaan huomattavissa yhdistävää tekijää.

Ongelma on luultavasti auton käyttöjärjestelmässä ja ratkennee seuraavassa päivityksessä. Tällaisen ongelman esiintyminen on kuitenkin hieman erikoista, sillä maahantuoja oli päivittänyt autoon uusimman järjestelmän. Liekö päivitystä testattu ennen sen julkaisemista?

Keskikonsolin käyttöjärjestelmä on yksinkertainen ja loogisesti jäsennelty. Pientä tahmeutta tosin ilmeni välillä. Esimerkiksi puhelimesta Apple CarPlayn kautta toistettavaa musiikkia varten joutui pariin kertaan jopa käynnistämään auton uusiksi. Normaalisti tämän täytyisi toimia saumattomasti, eikä vaatia käyttäjältä ylimääräisiä toimia, pois lukien kännykän ja auton ensimmäisen parituksen.

Ohjaamo



Matka taittuu

BYD:llä osataan tarjota autoille laadukas tuntuma ja hyvän varustelu hintaan nähden. Insinöörien lisätyölle olisi kuitenkin tarvetta muutamassa kohdassa.  Pehmeän alustan lisäksi auton mielipiteitä jakava ominaisuus on sen ohjaustuntuma.

DM-i:n ohjaus tuntuu yliavustetulta ja tunnottomalta, jonka olen pistänyt huomiolle muissakin valmistajan malleissa. Joillekin tämä voi toimia, mutta itse kaipaan enemmän tuntumaa tiehen. Tunnottomuuden vuoksi tulee tunne, että ajaisi tietokoneella eikä autolla. Ohjaustehostin tuntuu myös vahvistuvan portaittain nopeuden kasvaessa.

Ohjaustuntumaa voi periaatteessa säätää eri ajotiloilla, joita on lumesta sporttiin. Näillä ei käytännössä ole muuta eroa kuin kaasuvaste. Rekuperaatio-ominaisuuksia on kaksi: perus (standard) ja korkea (high). Ajossa näiden välillä ei tuntunut juurikaan eroa, mutta kulutuslukemia katsoessa huomasi, että jotain tapahtuu.  Akun latauksen huvetessa huomaa, että Xiaoyun-bensaturbo hurahtaa käyntiin, mutta käyntiääni on erittäin hiljainen. Kaasua polkaistaessa ja moottorin nostaessa samaan tahtiin kierroksia tulee tunne, että kierrokset menisivät suoraan renkaille. Tämä ei kuitenkaan pidä paikkansa.

Keskikonsolista saa näkyviin kulutuskäppyröitä niin bensiinille, kuin sähkölle. Mikäli akussa on hyvin varausta niin bensan kulutus näyttää pitkälti nollaa, mutta varauksen ehtyessä alkaa myös bensankulutuskäyrä elämään. Koeajon kumulatiivinen kulutus, molempien järjestelmien toimiessa yhtäaikaisesti, bensiinille oli 5,2 l/100 km ja sähkölle 5,9 kWh/100 km.

Auto edestä



Valmistaja ilmoittaa, että etuvetoisella Boost-varustelulla DM-i:llä pääsisi täydellä tankilla ja -akulla jopa 1 080 kilometriä, sähkön osuus tässä on 80 kilometriä. Nelivetoisessa Design-varustelussa yhdistetty toimintamatka on 870 kilometriä, josta sähkön osuus 70 kilometriä. Nelivedosta joutuu maksamaan 8 000 euroa enemmän.

Akun latausteho oli koeajossa korkeimmillaan 16 kilowatin tienoilla. Valmistajan mukaan lataus tapahtuu parhaillaan 18 kW teholla (DC). AC-latausteho on 11 kW. Latausnopeus laskee noin 10 kilowattiin varauksen ylityttyä 80 %. Valmistajan mukaan pikalaturilla latausta saa 30–80 % 35 minuutissa.  

Tuulilasinäyttö vaikuttaa olevan karvalakkimalli, eikä se näytä navigoinnin tietoja. Nopeus, nopeusrajoitus ja vakionopeudensäädin tosin tarjoavat riittävästi tietoa. Varsinaisen mittariston näyttöön kaipaisi taustavalaistusta. Aurinkoisella säällä sopivassa kulmassa valon tullessa näytölle ei saa mitään selvää, että mitä näytöllä tapahtuu.

Melukin on osa ympäristön hyvinvointia

Kiina ja vastuullisuus on vaikea saada sointumaan samassa lauseessa. BYD Globalin sivuilla on näennäisesti saatavilla yrityksen vastuullisuusraportit, joista uusin avautuva on vuodelta 2022. Raporttia lukiessa tulee enemmän mieleen kulttuurierot kuin se, että miten paljon yhtiö panostaa vastuullisuuteen.  

Vastuullisuusraportin (2022) ympäristöosuuden alkuvaiheessa kerrotaan muun muassa sitä, että yhtiö on puuttunut useisiin ympäristörikkeisiin, huolehtii jäteveden käytöstä ja varmistaa ettei ympäristöön tule meteliä. Olettaisin näiden juontuvan erilaisista tuotanto-olosuhteista ja Kiinalaisten tuotantostandardien tulkinnanvaraisuudesta.

Näiden jälkeen on vaikea ottaa vakavasti yhtiön kertomusta ympäristötavotteista, jotka vaikuttavat kunnianhimoisilta. Raportissa kerrotaan, että BYD ehdotti vuoden 2016 C40 maailman pormestarikokouksessa Meksikossa, että voitaisiin tavoitella jopa maapallon viilentämistä yhdellä asteella.

Tämä kuitenkin tapahtui lähes 10 vuotta sitten. Hienoa, että tätä muistellaan.  

On kuitenkin otettava huomioon, että Kiinassa ympäristöasioiden edistäminen tuskin on helppoa. Hattua on nostettava sille, että yhtiö pyrkii ainakin sanojensa mukaan vähentämään päästöjä ja edistämään Kiinan siirtymää vähäpäästöisyyteen.


Takaluukku

 

Brew Your Dreams

Hauska ekstra DM-i:ssä on V2L (Vehicle to load) ominaisuus. Tällöin autosta saa syötettyä virtaa myös ulos. Näppärä ominaisuus vaikkapa sähkökatkon aikana.

Käytännössä tämä tarkoittaa sitä, että auton Type2-rasiaan kytketään pistokeadapteri, johon voi kytkeä esimerkiksi kahvinkeittimen sekä vohveliraudan. Tiedetuubi testasi tämän toiminnan Haltialan kotieläintilan parkkipaikalla.

Papujen jauhamiseen, kahvin keittämiseen ja vohvelien tekoon kului akun varauksesta useampi prosentti, joten kotitalouden varavirtalähteeksi autosta ei ole pidemmäksi aikaa. Niin sanottu vohvelirauta, eli tässä tapauksessa voileipägrilli, oli testin suurin energiasyöppö, jota jouduttiin pitämään päällä pisimpään. Valitettavasti tarkkaa energiankulutuslukemaa, tai niiden erittelyä emme ällistyksestämme huomanneet ottaa ylös.

Kahvinkeitin kiinni johdolla autossa

SEAL U DM-i Design

✅ Kulutus ja kantama
✅ Hyvän tuntuinen varustelu
✅ Hinta

❌ Ohjelmiston ongelmat
❌ Tunnoton ohjaus
❌ Ajotilojen käytännön erot

Auto etusivusta

Tekniset tiedot: Seal U DM-i  

Hinnat alkaen: 39 500 euroa
Koaejoauton hinta: 48 314,68 euroa

Vetotapa: Neliveto tai etuveto
Kokonaisteho (kW/HP): 238/319 nelivedolla, 160/214 etuvedolla
Kiihtyvyys 0–100 km/h (s):  5,9 nelivedolla, 8,9 etuvedolla  Moottori: 1,5 litrainen bensaturbo
Akkukapasiteetti (kWh): 18,3
Akkutyyppi: BYD Blade (LFP), rautafosfaatti
Pistoketyyppi: Type2 & CCS
Latausaika, AC (11 kW 3-vaihelataus) 15–100 %: 120 min
Latausaika,DC (18 kW pikalataus) 30–80 %: 35 min

Toimintamatka, yhdistetty (km*): 870 nelivedolla, 1 080 etuvedolla
Toimintamatka sähköllä, yhdistetty (km)*: 70 nelivedolla, 80 etuvedolla
Kulutus sähkö*, yhdistetty (kWh/100 km): 23,5 nelivedolla, 21 etuvedolla
Kulutus bensiini*, yhdistetty (L/100 km): 7,4 nelivedolla, 6,4 etuvedolla
*WLTP laskennan mukainen

Pituus (mm): 4 775
Leveys (mm): 1 890, peilien kanssa 2 085
Korkeus (mm): 1 670
Akseliväli (mm): 2 765
Maavara (mm): Ei ilmoitettu
Omamassa (kg): 2 100 nelivedolla, 1 940 etuvedolla
Vetopaino, jarrullinen/jarruton (kg): 1300/750 nelivedolla, 750/750 etuvedolla
Tavaratilan koko, penkit ylhäällä/-kaadettuina (litraa): 425/1440

 

3D-kuva ilmakehästä tulossa: Tällainen on MTG-S -satelliitti

3D-kuva ilmakehästä tulossa: Tällainen on MTG-S -satelliitti

Seuraava uuden sukupolven Meteosat laukaistaan matkaan kesällä. Nyt helmikuun 20. päivänä se esiteltiin tiedostusvälineille, ja olimme mukana.

28.02.2025

Julkaisimme tammikuussa varsin perusteellisen videon uusista Meteosat -sääsatelliiteista, ja tuossa videossakin mainittiin seuraava näistä satelliiteista: MTG-S eli Kolmannen Sukupolven Meteosatin Sondaajaversio. 

Sondaaja? Mitä se tarkoittaa? Miten se täydentää edellistä satelliittia? Miksi niitä tarvitaan kaksi? Tai ei vain kaksi, vaan kolme! Tällä videolla käydään Bremenissä, Saksassa, OHB-yhtiön puhdastilassa katsomassa tekeillä olevaa satelliittia ja jututetaan projektissa mukana olevia henkilöitä. 

Videossa on tarjolla myös suomenkielinen tekstitys.

Huippuvuorten siemenholviin uusi lisäys - nyt yli miljoona siementä tallessa

Siemenholvin sisäänkäynti
Siemenholvin sisäänkäynti

Jos joskus maapallo joutuu suuren joukkotuhon kohteeksi, on Huippuvuorilla sijaitsevassa luolastossa tallessa yli miljoona siementä. Näillä turvataan viljelykasvien ja puulajiston monimuotoisuus tulevaisuudessa.

Kansainvälinen metsäntutkimuskeskus ja Maailman agrometsäkeskus (CIFOR-ICRAF) talletti tänään 120 000 siementä 13 afrikkalaisesta alkuperäislajista. 

Siemenholvi on kaivettu syvälle ikiroutaan Huippuvuorten pääkaupunki Longyearbyenin lähellä olevan vuoren rinteeseen. 

Kaikkiaan turvassa on nyt 1 331 458 siemennäytettä 6297 lajista, ja niitä on saatu kaikkiaan 123 luovuttajataholta.

Yksi niistä on CIFOR-ICRAF, joka teki ensimmäisen talletuksensa holvin avajaisissa vuonna 2008 ja on sen jälkeen tehnyt seitsemän talletusta.

Tämän vuoden talletus sisältää lajeja, jotka ovat kriittisiä ravinnon, metsityksen ja ilmaston sopeutumisen kannalta Afrikassa. 

Mukana on nyt myös siemeniä Afrikan ikonisesta baobab-puusta, jota kutsutaan myös "elämän puuksi". Ei ihme, sillä afrikkalainen baobab tarjoaa ruokaa, lääkkeitä ja taloudellisia hyötyjä miljoonille ihmisille. 

Siemenholvin varastoa

 

Nykyisin asutuksen sekä maanviljelyksen leviämisestä johtuvien hakkuiden ja ilmastonmuutoksen vuoksi arviolta 15 miljardia puuta häviää vuosittain, vaikka hiilidioksidin sitomisen kannalta puiden määrää pitäisi lisätä.

Samalla noin 38 % maailman puista on vaarassa kuolla sukupuuttoon, kun monissa niistä suositaan nopeasti kasvavia eksoottisia lajeja alkuperäisten sijaan.

Alkuperäislajien rooli ekosysteemien sietokyvyn vahvistamisessa ja paikallisyhteisöjen tukemisessa on erittäin suuri. Ne säilyttävät tärkeää monimuotoisuutta ja tukevat ilmastonmuutokseen sopeutumista sekä kestävää kehitystä.

Tämä uusin siementalletus auttaa säilyttämään alkuperäislajeja tuleville sukupolville. Monipuolisten ja resilienttien geenivarojen turvaaminen on tärkeää ruokaturvan ja ekosysteemien vakauden varmistamiseksi tulevaisuudessa.

Sisäänkäynti siemenholviin

 

Huippuvuorten siemenholvin omistaa ja sitä hallinnoi Norjan Maatalous- ja elintarvikeministeriö, ja se on perustettu palvelemaan maailman yhteisöä. Crop Trust tukee siemenholvin jatkuvaa toimintaa ja rahoittaa siementen valmistelua ja kuljetusta kehitysmaista laitokseen. Pohjoismainen geenivarakeskus (NordGen) operoi laitosta ja ylläpitää julkista verkkotietokantaa holvissa säilytettävistä näytteistä. Kansainvälinen neuvoa-antava neuvosto valvoo siemenholvin hallintaa ja toimintaa.

Juttu perustuu CIFOR-ICRAF:in tiedotteeseen.

Miksi Mars on punainen? Uusi selitys haastaa vanhan ruosteteorian.

Punaista Marsin pintaa Opportunity-kulkijan kuvaamana
Punaista Marsin pintaa Opportunity-kulkijan kuvaamana

Kaikkihan sen tietävät, että Marsin punainen väri johtuu rautaoksidista eli ruosteesta. Mutta milloin ja. miten Mars ruostui? Tänään julkistettu tutkimus selittää, että Marsin rautapitoinen pöly on ollut paljon kosteampaa kuin aiemmin on oletettu. Mars muuttui punaiseksi kenties jo ammoin, jolloin nestemäistä vettä oli sen pinnalla paljon.

Kun tähtitaivaalla nyt selvästi näkyvää Marsia katsoo, se on selvästi punainen. Punainen väri tulee Marsin pinnalla olevan pölyn rautapitoisuudesta: kun rauta on reagoinut nestemäisen veden tai ilman veden ja hapen kanssa, on tuloksena ollut punaista ruostetta. 

Siis ihan samaan tapaan kuin täällä Maan pinnalla.

Miljardien vuosien aikana rautaoksidipitoinen pinta-aines on jauhautunut pölyksi ja tuuli on levittänyt sitä ympäri planeettaa. Vaikka nykyisin Marsin kaasukehä on varsin ohut eikä siellä näytä olevan vapaana virtaavaa vettä, punaista pölyä syntyy koko ajan lisää ja se leviää.

Tänään julkistettu tutkimus pohtii tarkemmin Marsin ruosteen tarkkaa koostumusta. Tämä avaa uusia näkökulmia siihen, millainen on ollut Marsin ilmasto ja olosuhteet pinnanna. Lopulta kyse on myös siitä, onko Mars ollut joskus elinkelpoinen.

Nythän se ei ole – ensimmäiset Marsin ihmisasukkaat, milloin he ehtivätkään paikalle, joutuvat elämään pinnan alla suojassa säteilyltä ja tiristämään hyvin hapanta vettä syvällä pinnan alla olevasta jäästä.

Mars avaruudesta kuvattuna

 

Avaruusluotainten tekemien havaintojen perusteella on päätelty, että suurin osa rautaoksidista on hematiiittia, joka muodostui pinnan jo ollessa varsin kuiva Marsin varhaisen hyvin kostean kauden jälkeen. Hematiitti olisi muodostunut miljardien vuosien aikana lähinnä kaasukehässä olleen veden ja hapen avustuksella.

Marsin pinta-aineesta rautaa on peräti noin 13 %.

Nyt kuitenkin uudet laboratoriotutkimukset viittaavat siihen, että hematiitin sijaan pääsyyllinen punaisuuteen ovatkin hydratoituneet rautaoksidikiteet eli ferrihydriitti eli Fe3+10O14(OH)2.

Ferrihydriitti muodostuu tyypillisesti viileän veden läsnäollessa, joten sen on täytynyt syntyä silloin, kun Marsissa oli vettä vielä pinnalla.

“Yritimme luoda laboratoriossa Marsin pölyä eri rautaoksidien avulla", sanoo tutkimuksen johtaja Adomas Valantinas, Brownin yliopiston tutkijatohtori Yhdysvalloissa, joka aloitti työnsä Bernin yliopistossa Sveitsissä Euroopan avaruusjärjestön Trace Gas Orbiter (TGO) -luotaimen lähettämiä tietoja tutkien.

"Havaitsimme, että ferrihydriitti sekoitettuna basalttiin vastaa parhaiten avaruusalusten Marsilla näkemiä mineraaleja."

Keinotekoista Marsin punaista pölyä

Keinotekoista Marsin pölyä.

 

Marsin pölyn jäljennöksen tekemisessä haastavaa oli saada aikaan tarpeeksi hienojakoista ainetta. Lopulta tutkijat saivat aikaan pölyä, jonka hiukkaskoko on noin 1/100 ihmisen hiuksen paksuudesta. 

Sen jälkeen he analysoivat näytteitään samoilla tekniikoilla kuin kiertoradalla olevat avaruusalukset, kuten Marsia kiertävä TGO. Se tekee Marsin pinnasta spektrihavaintoja, joiden perusteella saadaan pinta-aineesta sen ainesosien "sormenjäkiä".

Keinotekoisen Mars-pölyn "sormenjäljet" olivat samanlaisia.

Spektrikäyriä

Ferrihydriitin (vas) ja hematiitin (oik) spektrikäyrät Marsin pinnalla ja kiertoradalta tehtyjen havaintojen sekä laboratoriokokeiden perusteella. 

 

Muutkin ovat ehdottaneet jo aikaisemmin, että ferrihydriittiä saattaisi olla Marsin pölyssä, mutta Adomas tutkimusryhmineen on ensimmäinen, joka on pystynyt yhdistämään laboratoriokokeet ja Marsia kiertävän luotaimen tekemät havainnot toisiinsa.

*

Tutkimusartikkeli Nature Communications -julkaisussa: Detection of ferrihydrite in Martian red dust records ancient cold and wet conditions on Mars

Juttu perustuu Euroopan avaruusjärjestön tiedotteeseen.

Valon ja aineen vuorovaikutus auttaa OLED-näyttöjä

OLED-näytön osa. Kuva: Mikael Nyberg ja Manish Kumar
OLED-näytön osa. Kuva: Mikael Nyberg ja Manish Kumar

Tutkijat kehittivät teoreettisia menetelmiä OLED-teknologian tehokkuuden parantamiseksi hyödyntämällä valon ja aineen hybriditiloja. Käytännön sovellukset vaativat vielä uusia materiaaleja ja jatkokehitystä, mutta tutkimus tarjoaa lupaavan suunnan OLED-teknologian kehitykselle. 

Turun yliopiston tiedote kertoo, että OLED-näyttöjen kirkkautta voidaan merkittävästi parantaa valon ja aineen vuorovaikutuksen paremmalla ymmärtämisellä.

OLED-teknologia, eli orgaanisia valoa säteileviä diodeja käyttävä tekniikka on yleistynyt valonlähteenä erilaisissa korkealaatuisissa näyttölaitteissa, kuten älypuhelimissa, kannettavissa tietokoneissa, televisioissa tai älykelloissa.

Fluoresoivat OLEDit ovat mullistaneet näyttölaitteiden teknologiaa joustavuutensa, keveytensä ja ympäristöystävällisyytensä ansiosta. 

Teknologian heikkoutena on kuitenkin alhainen hyötysuhde: fluoresoivissa OLEDeissa vain 25 prosenttia sähköenergiasta muuntuu tehokkaasti ja nopeasti valoksi. OLED-näyttöjen kirkkaus on yleensä myös muita valaistusteknologioita heikompi.

Turun yliopiston ja yhdysvaltalaisen Cornellin yliopiston tutkijat ovat nyt ehdottaneet ennakoivaa mallia tämän ongelman ratkaisemiseksi.

OLEDit ovat elektronisia komponentteja, jotka valmistetaan orgaanisista hiilipohjaisista yhdisteistä ja jotka tuottavat valoa, kun niihin johdetaan sähkövirtaa. Toisin kuin perinteisissä LCD-näytöissä, OLED-näytöissä jokainen pikseli säteilee itse valoa ilman erillistä taustavalaistusta.

Kun OLEDeissa käytetyt orgaaniset valoa säteilevät molekyylit asetetaan kahden puoliläpäisevän peilin väliin, ne voivat alkaa vuorovaikuttaa valon kanssa. Tämä vuorovaikutus voi luoda uudenlaisia hybriditiloja, eli uusia hiukkasia, joita kutsutaan polaritoneiksi.

Tuoreessa tutkimuksessa havaittiin, että oikeanlaisella säätelyllä voidaan löytää ihanteellinen piste, jossa pimeät tilat, 75 % kaikista tiloista, alkavatkin muuttua kirkkaiksi polaritoneiksi. Tämä voisi parantaa näyttöjen kirkkautta ja energiatehokkuutta huomattavasti.

"Vaikka yleinen ajatus polaritonien hyödyntämisestä OLED-teknologiassa ei ole täysin uusi, ennustava teoria suorituskyvyn vaihtelusta on puuttunut", kertoo apulaisprofessori Konstantinos Daskalakis Turun yliopistosta.

"Tässä työssä tarkastelimme tarkkaan, missä polaritoni saavuttaa ihanteellisen pisteensä eri skenaarioissa. Havaitsimme, että polaritonien vaikutus riippuu kytkettyjen molekyylien lukumäärästä. Mitä vähemmän molekyylejä, sitä suurempi vaikutus on."

"Esimerkkimolekyyleillä ja vain yhdellä kytketyllä molekyylillä hyötysuhde parani merkittävästi", jatkaa tutkijatohtori Olli Siltanen

"Parhaimmillaan polaritonit kiihdyttivät pimeiden tilojen konversiota jopa 10 miljoonaa kertaa nopeammaksi." 

Kun ilmiötä tutkittiin samanaikaisesti suurella määrällä molekyylejä, polaritoninen vaikutus oli vähäinen. Siksi nykyisten OLED-laitteiden valontuottotehokkuutta ei voida parantaa yksinkertaisesti varustamalla ne peileillä.

Tutkimuksessa saatu teoreettinen tieto on lupaava, mutta sen soveltaminen käytäntöön vaatii vielä jatkokehitystä.

"Seuraava haaste on kehittää teknologiaa, joka mahdollistaisi yksittäisten molekyylien vahvan kytkennän, tai luoda uusia molekyylejä, jotka on räätälöity polaritoneja hyödyntäviin OLEDeihin", selittää Daskalakis.

"Molemmat lähestymistavat vaativat merkittäviä teknisiä ratkaisuja, mutta onnistuessaan ne voisivat parantaa OLED-näyttöjen hyötysuhdetta ja kirkkautta huomattavasti."

OLED-laitteiden laajamittaisempaa käyttöönottoa ovat hidastaneet niiden alhainen energiatehokkuus ja rajallinen kirkkaus, etenkin verrattuna perinteisiin LED-laitteisiin. Tämä tutkimus voi kuitenkin tarjota perustan uuden sukupolven OLED-laitteille, jotka ovat entistä tehokkaampia ja pystyvät saavuttamaan aiemmin mahdottomana pidetyn suorituskyvyn.

Tulokset on julkaistu Advanced Optical Materials -lehdessä.

*

Juttu on Turun yliopiston tiedote lähes sellaisenaan, Tiedetuubin toimituksen tarkastamana.

Asteroidi 2024 YR4 on nyt paljon vähemmän uhkaava

Asteroidi 2024 YR4 kuvattuna La Palmalla, Kanarian saarilla sijaitsevalla Gran Telescopio Canarian -kaukoputkella
Asteroidi 2024 YR4 kuvattuna La Palmalla, Kanarian saarilla sijaitsevalla Gran Telescopio Canarian -kaukoputkella

Vuonna 2032 epämukavan lähelle maapalloa tuleva asteroidi 2024 YR4 on ollut alkuvuodesta monien kaukoputkien havaintokohteena. Samalla sen rataa on pystytty laskemaan tarkemmin ja tarkemmin: nyt näyttää siltä, että se ei tule törmäämään Maahan.

Asteroidi 2024 YR4 hujahti maapallon ohi viime joulukuun 25. päivänä noin 830 000 kilometrin päästä, eli jotakuinkin kaksi kertaa Maan ja Kuun välisen etäisyyden päästä.

Nyt se on noin 80 miljoonan kilometrin päässä meistä vipeltämässä poispäin noin 61 000 kilometrin tuntinopeudella. Asteroidi on soikealla radalla Auringon ympärillä, ja koska tuo rata leikkaa Maan radan, tulee YR4 lähellemme säännönmukaisesti noin neljän vuoden välein.

Vuonna 2032 se tulee hyvin, hyvin lähelle. Ensimmäisten arvioiden mukaan sillä oli pieni mahdollisuus törmätä tuolloin maapalloon – kuten kerroimme ensimmäisessä jutussamme aiheesta – ja sen jälkeen törmäystodennäköisyys kasvoi aina siihen saakka, että viime viikolla mahdollisuus osumaan nousi yli kolmen prosentin.

Minkään aurinkokunnan pienkappaleen todennäköisyys osua maapalloon ei ole ollut koskaan näin suuri. 

Nasan Jet Propulsion Laboratoryn arvio oli 3,1 % ja Euroopan avaruusjärjestön luku oli 2,8 %.

Törmäyksen todennäköisyys tosin kääntyi nopeaan laskuun loppuviikosta, sillä aivan tuoreimpien laskelmien mukaan osumismahdollisuus on enää 0,28 %.

Toisin sanoen: nyt näyttää siltä, että asteroidi menee Maan ohitse 99,72 prosentin todennäköisyydellä.

Havaintoja, havaintoja!

Erot luvuissa ja tämä jännittävä vaihtelu tulevat siitä, että astroidin rataa ei tunneta tarpeeksi hyvin, jotta sen sijainti 22. joulukuuta 2032 voitaisiin laskea erittäin varmasti. 

Eri tahot laskevat rata-arvioitaan hieman erilaisten lähtöarvojen perusteella.

Olennaista ovatkin tarkat havainnot, joita tehdään nyt monilla havaintolaitteilla ympäri maailman. Mitä enemmän asteroidin sijainnista ja liikkeestä on havaintioja, sitä tarkemmin sen rataa voidaan laskea eteenpäin.

0,28 prosentin törmäystodennäköisyys tulee vielä varmasti muuttumaan.

Kaavio todennäköisyydestä

ESA:n piirros näyttää millainen on laskelma 2024 YR4:n mahdollisesta sijainnista vuoden 2032 ohilennon aikaan. Punainen viiva koostuu asteroidin sijaintiarvioista. Pienen Maahan osumismahdollisuuden lisäksi on mahdollista, että YR4 osuukin Kuuhun!

 

Mukana talkoissa on ollut myös Suomen osaomistama yhteispohjoismainen teleskooppi NOT (Nordic Optical Telescope) La Palman saarella Kanariansaarilla.  Euroopan avaruusjärjestön tähtitieteilijä Marco Michelli on tehnyt sillä havaintoja YR4:stä ESA:n laskelmia varten.

Otsikkokuvassa on NOT:in luona La Palman observatorioalueella sijaitsevan Gran Telescopio Canarian ottama kuva asteroidi 2024 YR4:stä.

Myös JWST-avaruusteleskooppi tekee havaintoja asteroidista kahdessa jaksossa, ensin maaliskuun alussa ja sitten toukokuussa. Tätä ennen YR4 on ollut hankalasti näkyvissä Webbin näkökulmasta, joten havaintoja ei ole tehty aikaisemmin.

Avaruusteleskooppi pystyy auttamaan ennen kaikkea asteroidin koon ja koostumuksen arvioinnissa.

Webb-teleskoopilla, kuten kaikilla muillakin tähtitieteellisillä havaintolaitteilla on havainto-ohjelmaan varattuna aikaa yllättäviä, kiinnostavia ja tärkeitä havaintoja varten. Näillä näkymin JWST havaitsee asteroidia kaikiaan neljän tunnin ajan.

Kevään kuluessa YR4 etääntyy meistä jo niin kauas, että siitä ei saada enää kunnollisa havaintoja. Uusia havaintoja saadaankin vasta vuonna 2028, kun se tulee jälleen lähellemme – ja tuolloin se menee satavarmasti turvallisesti ohi.

Lyijyinen rugbypallo

Lyijy-ytimen muoto määritettiin tarkasti. Kuva: University of Surrey
Lyijy-ytimen muoto määritettiin tarkasti. Kuva: University of Surrey

Lyijyatomin ydintä on perinteisesti pidetty täydellisen pallomaisena. Uuden tutkimuksen mukaan se onkin muodoltaan soikea.

Kultaisella 80-luvulla Radio Cityn taajuuksilla pyöri legendaarinen Pullakuskit-radiohupailu, jonka Viisasten kerho -osiossa panelistien päätä vaivasi kysymys siitä, mitä on kupari ja kuinka paljon. Jokseenkin samaan kategoriaan asettuu kysymys siitä, minkä muotoista on lyijy.

Lyijyn 208-isotooppi (²⁰⁸Pb) on äärimmäisen pysyvä, mikä johtuu siitä, että sen ydin on kaksoismaaginen. Sellaisiksi määritellään ytimet, joissa niin protonien kuin neutronienkin lukumäärä on niin sanottu maaginen luku.  

Ydinfysiikassa maagisia ovat luvut, joiden ilmoittamalla protonien tai neutronien lukumäärällä ytimen kuorimallin mukaiset kuoret ovat täysiä. Silloin ytimen pysyvyyteen vaikuttava sidosenergia on mahdollisimman suuri.

Surreyn yliopiston tutkimuksessa tarkasteltiin lyijyn kaksoismaagisen ytimen muotoa, jonka on pitkään ajateltu olevan täsmällisen pallomainen. Niin voisi kuvitella, jos ja kun kerran ytimen kuoret ovat täysiä. Makromaailman ilmiöihin perustuvia olettamuksia ei kuitenkaan pitäisi soveltaa mikromaailmaan, kvanttimaailmasta puhumattakaan. 

Jack Hendersonin johtamassa tutkimuksessa tehtiin neljä erillistä mittausta, joiden yhdistäminen antoi yllättävän tiedon lyijy-ytimen muodosta. Se ei ole pallo vaan pyörähdysellipsoidi – eli kuin rugbypallo, joka on amerikkalaista serkkuaan tylppäkärkisempi.

Mittaukset tehtiin Argonnen kansallisessa laboratoriossa Yhdysvalloissa. GRETINA-gammaspektrometrillä pommitettiin lyijy-ytimiä hiukkasilla, joiden nopeus oli kymmenesosa valon nopeudesta eli lähes 30 000 kilometriä sekunnissa. Ytimien ja hiukkasten vuorovaikutukset tuottivat säteilyä, jonka ominaisuuksista pystyttiin tekemään johtopäätöksiä ydinten muodosta. 

Kyse ei ole pelkästä kuriositeetista, sillä havainto osoittaa, että atomiydinten rakenne on huomattavasti aiemmin arveltua mutkikkaampi. Tutkimukseen osallistuneen Paul Stevensonin mukaan hiukkassuihkun virittämien ydinten värähtelyt eivät kenties ole niin säännöllisiä kuin on kuviteltu. 

Lyijy-ytimen yllättävä muoto ei olekaan pelkästään yhden alkuaineen erikoinen ominaisuus, vaan havainnolla voi olla huomattavia vaikutuksia laajemminkin sekä ydin- että astrofysiikkaan – kuten esimerkiksi siihen, miten raskaat alkuaineet ylipäätään muodostuvat. 

Tutkimus on julkaistu Physical Review Letters -tiedelehdessä.

Kiertokäynti Hindenburgissa ja Zeppelin-museossa

Kiertokäynti Hindenburgissa ja Zeppelin-museossa

Zeppelin-ilmalaivat ovat kotoisin Saksan eteläosasta, Friedrichshafenista. Siellä sijaitsee myös suurempi ja parempi kahdesta Zeppelineistä kertovista museoista. 

20.02.2025

Tällä videolla museossa kerrotaan paitsi ilmalaivoista ja erityisesti Zeppelineistä, niin siellä on myös täysikokoinen kopio osasta Hindenburgin matkustamosta. 

Kävin museossa edellisen kerran helmikuussa 2024, ja tuolta matkalta tullut materiaali on odottanut editointia siitä alkaen. Tarkoitus oli tehdä pitkä ja seikkaperäinen video Ferdinand Graf von Zeppelinistä ja hänen ilmalaivoistaan, mutta sitä odottaessa tein museokäynnistä tämän pienen, nopeasti editoidun videon. 

Zeppelin-museon nettisivut: www.zeppelin-museum.de 

Museo sijaitsee Friedrichshafenin keskustassa ja on auki maanantaita lukuun ottamatta joka päivä klo 10–17. 

Samankaltainen video on tulossa pian myös Friedrichshafenin toisesta jännästä museosta, missä kerrotaan Claude Dornierista sekä hänen lentokoneistaan. 

Suomalaiset mukaan Saksan uuden tutkimusjäänmurtajan suunnitteluun

Havainnekuva Polarstern 2 -tutkimusaluksesta. Kuva: Ocean Architects
Havainnekuva Polarstern 2 -tutkimusaluksesta. Kuva: Ocean Architects

Saksa on tilannut seuraajan nykyiselle tutkimusjäänmurtaja Polarsternille. Alfred Wegener -instituutin uuden aluksen on tarkoitus tulla käyttöön vuonna 2030. Mukana suunnittelussa on suomalainen Elomatic.

Joulukuussa 2024 thyssenkrupp Marine Systems AG voitti Alfred Wegener -instituutin julkisen tarjouskilpailun uuden Polarsternin rakentamisesta. Alus rakennetaan tkMS:n  telakalla Wismarissa ja tulee pitämään kotisatamanaan Bremerhavenia.

Valmistuttuaan uudesta Polarsternistä tulee maailman suurin ja edistyksellisin jäänmurtaja, joka toimii myös tutkimus- ja arktisten alueiden logistiikka-aluksena. Aluksessa on laaja valikoima tutkimus- ja logistiikkalaitteita, sisäänrakennetut laboratoriot sekä propulsiojärjestelmä, joka käyttää vihreitä polttoaineita yhdessä suuren akkujärjestelmän kanssa. Lisäksi alus pystyy murtamaan 1,8 metriä paksua jäätä. Uuden aluksen on määrä korvata nykyinen Polarstern vuonna 2030.

Polarstern on monille suomalaistutkijoillekin tuttu alus, joka on kiertänyt napa-alueita pohjoisessa ja etelässä 1980-luvun alusta alkaen.

Suomalaisen suunnittelu- ja konsultointiyritys Elomaticin saksalainen tytäryhtiö, Elomatic Maritime Technologies GmbH osallistuu uuden aluksen tekemiseen tarjoamalla thyssenkrupp Marine Systemsille perus- ja valmistussuunnittelua sekä telakkakonsultoinnin aluksen rakennusvaiheen aikana. 

Uusi Polarstern-hanke sopii saumattomasti yrityksen asiantuntemukseen uraauurtavien arktisten tutkimusalusten suunnittelussa ja rakentamisessa. Elomatic Maritime Technologies Wismarissa sai alkunsa vuonna 2022, kun telakkayhtiö MV Werftenin johtoryhmän jäsenet päättivät liittyä Elomaticiin. Yksi tavoitteista oli säilyttää keskeinen laivasuunnitteluosaaminen kotikaupungissaan Wismarissa.

Elomatic on toiminut vuodesta 2022 lähtien myös pääsuunnittelukumppanina Kanadan rannikkovartioston Polar-jäänmurtajahankkeessa, joka on tällä hetkellä valmistussuunnitteluvaiheessa Vancouverissa.

*

Juttu perustuu Elomaticin tiedotteeseen.

Eksoplaneetan kaasukehän rakenne selvitetty ensi kertaa

Visualisointi eksoplaneetan kaasukehän kerroksista
Visualisointi eksoplaneetan kaasukehän kerroksista

Tämä on todella jännää ja ainutlaatuista: tutkijat ovat onnistuneet kartoittamaan ensimmäistä kertää kolmiulotteisesti eksoplaneetan kaasukehän rakenteen.

Tylos, eli WASP-121b, on noin 900 valovuoden päässä meistä Peräkeulan tähdistössä sijaitseva eksoplaneetta. 

Se on vähän kuin iso ja kuuma Jupiter, kaasujättiläinen, joka kiertää tähteään niin lähellä, että vuosi siellä kestää vain noin 30 Maan tuntia. Koska planeetta on vuorovesilukittunut tähtensä kanssa, on sen toisella puolella koko ajan kuumaa ja toisella kylmää.

Tutkijaryhmä on onnistunut selvittämään nyt Tyloksen kaasukehän rakenteen kolmiulotteisesti. Kiinnostavinta ovat erityisesti tuulet kaasukehän eri kerroksissa. 

Kyseessä on ensimmäinen kerta, kun eksoplaneetan kaasukehästä on saatu näin yksityiskohtaista tietoa. Aiheesta julkaistiin tänään artikkeli Nature-lehdessä.

"Se, mitä löysimme, oli yllättävää: suihkuvirtaus pyörittää kaasua planeetan päiväntasaajan ympäri, kun taas erillinen virtaus kaasukehän alemmissa kerroksissa siirtää kaasua kuumalta puolelta viileämmälle puolelle", kertoo Julia Victoria Seidel, artikkelin pääkirjoittaja ja tähtitieteilijä Euroopan eteläisessä observatoriossa (ESO) sekä Nizzan observatorion Lagrange-laboratoriossa.

Suihkuvirtaus kattaa puolet planeetasta ja kiihdyttää itsensä huimaan vauhtiin planeetan kuumalla päiväpuolella. 

"Voimakkaimmatkin hurrikaanit Aurinkokunnassamme ovat rauhallisia verrattuna tähän", Seidel toteaa ESO:n tiedotteessa.

Tutkijaryhmä käytti ESO:n VLT-observatorion kaikkia neljää teleskooppia, joiden valo yhdistettiin ESPRESSO-instrumentilla siten, että teleskoopit toimivat kuin yksi, todella suuri havaintolaite. Paitsi että neljän teleskoopin valoa keräävä peilipinta-ala on suuri, niiden välinen etäisyys saa aikaan sen, että kuva on yhtä tarkka kuin olisi koko observatorion kokoisella teleskoopilla.

Samaa tekniikkaa voidaan myöhemmin käyttää myös muiden eksoplaneettojen kaasukehien tutkimiseen.

"VLT:n avulla saatoimme tutkia eksoplaneetan kaasukehää kolmessa eri kerroksessa", sanoo tutkimuksen toinen kirjoittaja Leonardo A. dos Santos, joka toimii Space Telescope Science Institutessa Baltimoreissa, Yhdysvalloissa. 

Kaavio raudan, natrieumin ja vedyn liikkeistä

Tiimi seurasi raudan, natriumin ja vetykaasun liikkeitä kaasukehässä, ja näiden avulla saatiin selvitettyä tuulet syvällä, keskikerroksissa ja pinnnalla. 

Havainnot paljastivat myös titaanin olemassaolon juuri suihkuvirran alapuolella, kuten toisessa tutkimuksessa, joka julkaistiin Astronomy and Astrophysics -lehdessä. Tämä oli myös yllätys, koska  aiemmat havainnot olivat osoittaneet titaanin puuttuvan kaasukehästä kokonaan – sitä ei ole, tai mahdollisestise on piilossa syvällä kaasukehässä.

"Nämä ovat juuri sellaisia havaintoja, joita on hyvin vaikeaa tehdä edelleen avaruusteleskoopeilla. Maanpääliset, suuret havaintolaitteet ovat edelleen hyvin tärkeitä."

VLT:tä suurempi ja parempi Extremely Large Telescope (ELT) on tällä hetkellä rakenteilla Chilen Atacaman autiomaassa. Tutkijat ovat jo etukäteen innoissaan ANDES-havaintolaitteesta, jonka avulla voidaan tehdä tällaisia havaintoja paljon nykyistä paremmin.