Tähdistöt: Orion Markus Hotakainen Ma, 09/12/2024 - 12:25
Orionin tähdistö. Karttapiirros: Markus Hotakainen
Orionin tähdistö. Karttapiirros: Markus Hotakainen

Otavan jälkeen todennäköisesti tunnetuin tähtikuvio on Orion. Se toimiikin oivallisena siirtymänä syystalven tähtitaivaasta talvisiin näkymiin.

Orion, jättiläismetsästäjä ja soturi, oli komeimmista komein ja myös tiesi sen. Rangaistukseksi ylvästelystään jumalat lähettivät skorpionin pistämään häntä kuolettavasti jalkaan. Kumpainenkin päätyi taivaalle tähtikuvioksi, mutta Orionin rakastetun, jumalatar Dianan pyynnöstä siten, että Orion pääsee pakenemaan läntisen taivaanrannan taakse, kun Skorpioni nousee idästä.

Tiimalasia muistuttava Orionin hahmo komeilee talvisella iltataivaalla pystyasennossa suoraan etelässä. Jättiläismetsästäjän ”olkapäällä” on α Orionis, punainen Betelgeuze, joka on satoja kertoja Aurinkoa suurempi jättiläistähti. Betelgeuze on elämänsä ehtoopuolella oleva tähti. Se on kuluttanut ydinpolttoaineensa lähes loppuun ja voi räjähtää milloin tahansa supernovana.

Orionin toisena ”jalkana” on hieman pienempi jättiläistähti Rigel. Vaikka Rigel on tähdistön β-tähti, se on todellisuudessa kirkkaampi kuin α-tähti. Rigel on puolestaan väriltään sinertävänvalkoinen. Sekä Betelgeuze että Rigel ovat niin kirkkaita, että niiden värit erottuvat selvästi paljain silmin.

Keskellä Orionin kuviota on kolmen tähden muodostama Orionin vyö, joka osoittaa vasemmalle alaviistoon lähes suoraan naapuritähdistön, Ison koiran, kirkkaimpaan tähteen Siriukseen. Vyöstä roikkuu Orionin miekka, niin ikään kolmen hieman himmeämmän tähden muodostama jono. Orionin miekan ja vyön muodostamaa kuviota sanotaan suomalaisittain Väinämöisen viikatteeksi, jota se melkoisesti muistuttaakin.

Jo kiikarilla näkyy selvästi, että miekan keskimmäinen ”tähti” onkin jotain aivan muuta: se on tähtienvälinen kaasupilvi, jossa syntyy kaiken aikaa uusia tähtiä kaasusta tiivistymällä. Orionin suuri kaasusumu eli Messier 42 on ainoa Suomen leveysasteilta helposti havaittava kaasusumu.

Kaukoputkella sumun keskellä erottuu neljän vastikään syntyneen tähden muodostama joukko, Trapetsi, ja sumun sisällä on infrapunakaukoputkilla havaittu syntymässä olevia tähtiä. M42 ja sen vieressä oleva himmeämpi M43 ovat näkyvimmät osat valtavasta tähtienvälisestä vetykaasupilvestä, joka kattaa suuren osan Orionin tähdistön alueesta. Kaasusumun vety hohtaa punaista väriä, joka ei kuitenkaan erotu kuin kaukoputkilla otetuissa kuvissa.

Näetkö punaista – vai sinistä? Osa II Markus Hotakainen La, 23/11/2024 - 09:42
Sateenkaari
Sateenkaari
The Dress

Artikkelin edellisessä osassa selvisi, että näemme värit jokseenkin samanlaisina, mutta nimeämme erilaiset värisävyt usein eri tavoin. Ja näemmekö ne aina oikein?

Vaikka havaitsemme värit jokseenkin samalla tavalla, määrätty väri voi näyttää eri ympäristöissä erilaiselta. Värien havaitseminen on tieteellisesti ilmaistuna ”kontekstisensitiivinen tulkinta”: tietyn värisävyn mieltämiseen vaikuttavat muut lähettyvillä olevat värit.

Jos rinnakkain ovat sininen ja keltainen tai sininen ja vihreä, sininen näyttää erilaiselta, vaikka kyse olisi täsmälleen samasta värisävystä.   

Ilmiön taustalla on monia syitä, joista osa on vielä hämärän peitossa.

”Osittain se johtuu näkötiedon käsittelyn organisoitumisesta. Signaaleja prosessoivat reseptiiviset kentät ovat vuorovaikutuksessa toistensa kanssa ja siksi värit vaikuttavat toisiinsa”, selvittää  Jukka Häkkinen, joka tutkii Helsingin yliopistossa visuaalista kognitiota eli näköaistiin perustuvaa havaitsemista.

Toistaiseksi ei tiedetä, onko kyseessä vain näköaistiin liittyvä sivutuote vai onko ilmiöllä jokin funktio, tietty tarkoitus.

Joka tapauksessa se tekee saman värin eri sävyjen erottamisen toisistaan joskus hankalaksi. Jos rinnakkain on esimerkiksi viisi vihreän sävyä, jotka poikkeavat vain hyvin vähän toisistaan, kaikki eivät näe viittä sävyä, vaan ainoastaan kaksi tai kolme.

Hankaluuksia tulee myös silloin, jos värejä yrittää tunnistaa ulkomuistista. Rautakaupassa omaa vuoronumeroa odotellessa voi joutua kuuntelemaan sanaharkkaa, kun pariskunta on valitsemassa maalia hyllykköön, jonka taustalla oleva seinä on vaikkapa ruskea.

Ilman värinäytettä yksimielisyyteen ruskean sävystä ja siihen sopivasta uudesta väristä on yleensä hyvin vaikea päästä. Ja vaikka sopu syntyisikin, valittu väri osoittautuu kotona todennäköisesti vääräksi.

 

Synnynnäistä ja opittua

Musiikin puolella tunnetaan absoluuttinen sävelkorva eli kyky tunnistaa tai tuottaa säveliä pelkästään havaitun äänenkorkeuden perusteella. Onko olemassa vastaavanlaista absoluuttista värisilmää, joka olisi oivallinen ominaisuus esimerkiksi juuri sopivaa maalia valittaessa?

”Epäilen. Uskoisin, että värien ja värisävyjen tunnistaminen perustuu kiinnostukseen ja harjoitteluun. Jos väreihin kiinnittää keskimääräistä enemmän huomiota, ne jäävät myös paremmin mieleen.”

Mielenkiintoinen näköaistiin liittyvä ilmiö on toisaalta värin pysyvyys. Riippumatta siitä, millainen on esimerkiksi tietystä esineestä silmään tulevan valon aallonpituusjakauma, sen väri nähdään samanlaisena.

Osittain kyse on värimuistista. Jos kotisohvalla on sininen ja punainen tyyny, ne nähdään sinisenä ja punaisena valaisipa niitä ikkunasta tuleva auringonpaiste tai lämminsävyinen energiansäästölamppu.

Tyynyjen tiedetään olevan tietyn värisiä.

Värimuisti ei kuitenkaan toimi samalla tavalla oudossa ympäristössä.

”Silloin näköaisti turvautuu diagnostisiin objekteihin, väreiltään tuttuihin kohteisiin. Sellaisia ovat esimerkiksi banaani, mansikka ja kesäinen nurmikko. Väriaistimus kalibroituu niiden perusteella.”

Häkkisen mukaan aivot tekevät myös eräänlaista skaalausta näkymän yleisen aallonpituusjakauman suhteen. Jos kaikki vaikuttaa ylenpalttisen punasävyiseltä, aistimus ”säätyy” siten, että värit asettuvat kohdalleen.

”Näköaisti on kehittynyt havaitsemaan värejä kontekstissa, suhteessa ympäristöön ja muihin väreihin. Jos koehenkilö katselee laboratoriossa pientä tasaväristä lätkää, tilanne on täysin teoreettinen.”

Silti iso osa näkötutkimuksesta on tehty juuri tällä tavoin. Tarkasteltavan kohteen koko vastaa kahden asteen kulmaa eli se näyttää halkaisijaltaan neljä kertaa suuremmalta kuin täysikuu.

Nykyisenä suuntauksena on käyttää yhä enemmän ärsykkeitä, jotka ovat luonnollisia. Sellaisia, joihin törmää jokapäiväisessä elämässä.      

”Tutkimus tuottaa jatkuvasti uutta tietoa, ja värien aistimiseen liittyviä ilmiöitä ja mekanismeja löytyy lisää.”

 

Ikänäkö ei muuta värejä

Yksi yllättävistä havainnoista liittyy ikääntymiseen. Iän karttuessa näkökyky muuttuu monin tavoin, joista yksi johtuu silmän linssin eli mykiön vähittäisestä sumentumisesta.

Linssi läpäisee valon eri aallonpituuksia eri tavalla lapsuudessa ja nuoruudessa kuin vanhemmalla iällä. Voisi kuvitella, että se vaikuttaa myös värien näkemiseen.

Tutkimusten mukaan ei vaikuta.

Kokeet ovat osoittaneet, että näemme värit samalla tavalla riippumatta kertyneistä ikävuosista. Aivot osaavat kalibroida värit kohdalleen, vaikka verkkokalvolle lankeavan valon aallonpituusjakauma on erilainen.

”Asiaa on tutkittu nuorilla koehenkilöillä, joiden silmien edessä oli sumentuneen mykiön vaikutusta simuloiva suodin. Luonnollisessa ympäristössä kalibroituminen tapahtui lähes välittömästi.”

Näkymä oli ensin ruskean- tai kellertävänsävyinen, mutta vain hetkistä myöhemmin värit erottuivat koehenkilöiden kuvauksen mukaan juuri sellaisina kuin ne todellisuudessakin olivat.

Laboratorio-olosuhteissa tilanne on hieman toinen. Kun pimeässä huoneessa heijastetaan seinälle pieni yksivärinen ympyrä, sitä onkin paljon vaikeampi luonnehtia oikein.

”Kun tarjolla ei ole vertailukohtia tai kiintopisteitä, aivojen on paljon vaikeampi kalibroida tietyn aallonpituusjakauman tuottamaa väriä kohdalleen.”

Värit siis vaikuttavat väreihin.

The Dress

Yksi kuva valehtelee enemmän kuin tuhat sanaa

Kaikessa mukautuvuudessaan ja herkkyydessään silmä on instrumenttina melko kehno. Kuva on pieni, se tärisee ja väreistä on vain jonkinlainen aavistus. Sekä näkö- että väriaistimus syntyy vasta aivoissa. Ja kumpikin voi olla väärä.

Kymmenisen vuotta sitten netissä kiersi kuva valkoisesta mekosta, jossa oli kullanväriset pitsisomisteet.

”Ei, se oli tietenkin sinimusta!”

Juuri tästä meemissä oli kyse: ihmiset näkivät mekon värit kahdella hyvin eri tavalla.

Kuvan oli ottanut skotlantilainen Cecilia Bleasdale, joka hankki mekon tyttärensä häihin. Nettiin päätynyt kuva levisi kulovalkean lailla ympäri somea ja sai nimen The Dress. Se keräsi kymmeniä miljoonia katseluja, kommentteja ja jakoja.

Osa ihmisistä näki sen valkoisena ja kultaisena, osa sinisenä ja mustana.

Kuvaan liittyvästä erikoisesta ilmiöstä on julkaistu suuri määrä tutkimuksia. Otoksen klassikkoasemasta kertoo, että Jukka Häkkinen on käsitellyt sitä havaintopsykologian luennoillaan.

Todellisuudessa mekko oli sininen ja siinä oli mustia pitsisomisteita. Kuvaa ei ollut manipuloitu millään tavalla, ja silti osa ihmisistä näki värit oikein, osa väärin. Miksi?

”Taustalla on edellä mainittu värin pysyvyys ja ilmiö nimeltä discounting the illumination eli valaistuksen poislukeminen. Toinen aivojen tekemä tulkinta on, että valonlähde on katsojan takana ja valaisee mekkoa, toinen taas se, että valo tulee mekon takaa eli se on varjossa.”

Aivot tulkitsevat jälkimmäisen tilanteen siten, että ne ”vähentävät” hämäräksi mielletystä kuvasta oletetun varjon vaikutuksen, vaikka mitään varjoa ei ole. Siksi monet näkevät värit väärin, valkoisena ja kultaisena.

The Dress on loistava esimerkiksi siitä, että valon aallonpituudella ei ole mitään tekemistä havaitun värin kanssa, vaan kyse on aina tulkinnasta.”

Aivot tekevät ensin arvion siitä, mikä on kulloinenkin valaistustilanne, ja vähentävät sitten näin saadun valon oletetun aallonpituusjakauman näkymästä, jolloin tuloksena on aistimus tietyistä väreistä.

Joka voi olla täysin väärä.

Kuvat: Markus Hotakainen, Cecilia Bleasdale

Näetkö punaista – vai vihreää? Osa I Markus Hotakainen Ke, 20/11/2024 - 11:34
Revontulia Nuuksion taivaalla
Revontulia Nuuksion taivaalla
kesäyö, hämärä, kuu

Miten näemme värit? Punainen, keltainen ja sininen – jokainen tietää, miltä ne näyttävät. Perinteisen käsityksen mukaan ne ovat kolme pääväriä. Mutta miten itse kukin meistä näkee kolmikon – tai ylipäätään eri värit ?

”Yllättävän samalla tavalla”, toteaa Jukka Häkkinen, joka tutkii Helsingin yliopistossa visuaalista kognitiota eli näköaistiin perustuvaa havaitsemista.

Väriaistimuksen synty lähtee liikkeelle siitä, kun silmään päätynyt valo lankeaa mykiön ylösalaisin kääntämänä kuvana verkkokalvolle. Siinä tapahtuu värierottelu.

Useasta kerroksesta muodostuvassa verkkokalvossa on valoa aistivia soluja, sauvoja ja tappeja. Tappisoluja on kolmenlaisia ja ne ovat herkkiä eri aallonpituusalueilla.

Silmässä on noin kuusi miljoonaa tappisolua. Punaiselle herkkiä on noin 3,5 miljoonaa, viherherkkiä vajaat kaksi miljoonaa ja siniherkkiä runsaat puoli miljoonaa.

”Kukin solutyyppi aktivoituu tietyllä tavalla ja se kertoo, mistä väristä on kyse.”

Tappisolut reagoivat valon eri aallonpituuksiin, mutta se ei vielä riitä tuottamaan väriaistimusta. Aivojen pitää saada signaaleja, joita ne pystyvät käsittelemään.

”Tappisolujen aktivoitumisen jälkeen gangliosolut tekevät koodauksen.”

Voisi kuvitella, että nämä koodarit ovat valon kulkusuuntaan nähden tappisolujen jälkeen, mutta niin ei ole: gangliosolut ovat verkkokalvon etupinnalla.

Hermoverkko välittää punaiselle, vihreälle ja siniselle herkistä tappisoluista viestejä, jotka ”sytyttävät” tai ”sammuttavat” gangliosolujen väripareista jomman kumman. Tuloksena on signaali, joka sisältää tiedon havaitusta väristä.      

Punavihreä ei ole väri

Koodaaminen tapahtuu vastavärien pohjalta. Väriparit muodostuvat punaisesta ja vihreästä sekä sinisestä ja keltaisesta. Kolmas koodauspari on musta ja valkoinen.

Gangliosoluissa syntyvät signaalit välittävät tiedon väristä joko-tai-periaatteella. Punainen tai vihreä, sininen tai keltainen.

”Niitä ei voi sekoittaa eli ei ole olemassa punavihreää tai sinikeltaista väriä.”

Värierottelun ja koodauksen tuloksena syntyneet signaalit kulkevat näköhermoa ja -juostetta pitkin aivojen takaosassa sijaitsevaan näkökeskukseen. Siellä tapahtuu signaalien prosessointi, jonka tuloksena näemme värejä. Emmekä pelkästään punaista, vihreää, sinistä ja keltaista, vaan laajan kirjon erilaisia sävyjä.

Verkkokalvolla olevien tappisolujen herkkyysalueissa on yksilöllisiä eroja eivätkä ne kaikilla reagoi samalla tavalla esimerkiksi punaiseen väriin.

Lisäksi tappisolujen määrä vaihtelee huomattavan paljon, mikä puolestaan vaikuttaa väriaistin tarkkuuteen.

”Sensoreissa on vaihtelua, mutta aivot kalibroivat ympäristöstä tekemämme värihavainnot näyttämään jokseenkin samanlaiselta katsojasta riippumatta.”

Punainen on punaista ja vihreä vihreää. Kiistelyä aiheutuu yksityiskohtaisemmasta tulkinnasta eli mikä on värin sävy. Onko suosikkimuki tai kulunut kesäpusakka sinivihreä, petroolinsininen vai turkoosi? Mielipiteitä voi olla yhtä monta kuin katsojiakin.

”Toisaalta siihen vaikuttaa harjaantuminen. Treenaamalla värisävyjen hahmottamista oppii näkemään pienetkin erot.”

Se ei silti takaa yksimielisyyttä. Vielä suurempaa yksilöllistä vaihtelua on nopeudessa: kuinka pikaisesti pystyy erottamaan värisävyjä toisistaan. Ja siihen taas vaikuttavat kulttuurierot.

Jos kielessä on siniselle ja vaaleansiniselle omat nimityksensä, ne kuuluvat väriaistimuksen kannalta eri kategorioihin, ja silloin sävyjen erottaminen käy sujuvammin.

Ei nimi väriä pahenna

Värien näkeminen ei siis ole pelkästään fysiologinen ja neurologinen prosessi, se on myös kulttuurisidonnainen ilmiö. Väreillä täytyy olla nimityksiä, jotta pystymme kommunikoimaan.

Värien havaitsemisen ohella oleellinen tekijä onkin niiden nimeäminen, ja siinä tulee esiin selviä eroja. Eri kulttuureissa värit nimetään eri tavoin ja värejä kuvaavia sanoja on myös erilainen määrä.

Joissakin kielissä esimerkiksi sinisellä ja vaaleansinisellä värillä on omat nimityksensä toisin kuin vaikkapa suomessa, missä käytetään paljon johdoksia: vaaleanvihreä, tummanpunainen, rikinkeltainen.

Toisaalta mekin kutsumme sinipunaista väriä violetiksi. Vähemmän toisistaan poikkeavien värisävyjen kohdalla näkemyserot kasvavat entisestään.

”Selkeiden värien raja-alueilla esiintyy paljon tällaista hajontaa. Siihen vaikuttaa varmasti oppiminen, mutta myös mielenkiinto värejä kohtaan.”

Kuvataiteista kiinnostuneet ja etenkin taidealaa opiskelevat omaksuvat helposti hyvin toisenlaisen väripaletin kuin värien kanssa vähemmän tekemisissä olevat.

Värien havaitsemista on kohtalaisen hankala tutkia, sillä toisen ihmisen silmän tai pikemminkin pään sisään on mahdoton päästä.

Väri- tai ylipäätään näköaistimus kun ei synny silmässä: se on vain instrumentti, joka kerää valon ja syöttää sen edelleen aivojen muodostamaan tietojenkäsittelyjärjestelmään.

Huimasti kehittyneillä aivokuvantamisen menetelmillä, eritoten toiminnallisella magneettikuvauksella, pystytään tutkimaan, mitä aivoissa tapahtuu, kun ihminen saa erilaisia aistiärsykkeitä.

Toistaiseksi ei vielä kyetä määrittämään, mitä väriä koehenkilö kulloinkin katselee, mutta se on jo hyvin tiedossa, mitkä aivojen alueet aktivoituvat, kun näköhavainto syntyy. Ja näkeekö koehenkilö värejä.

”Sekä tappi- että gangliosolujen toimintaa pystytään selvittämään jo yksittäisten solujen tasolla. Niihin voidaan kiinnittää elektrodeja, jotka välittävät tietoja siitä, miten solut reagoivat erilaisiin ärsykkeisiin ja millaisia signaaleja ne saavat aikaan.”

Tulokset ovat kuitenkin usein ristiriitaisia eikä läheskään kaikkea väri- tai ylipäätään näköaistimuksen synnystä vielä tiedetä.

 

kesäyö, hämärä, kuu

Hämärässä kaikki on harmaata

”Yleinen väärinkäsitys on, että tietty valon aallonpituus vastaa tiettyä havaittua väriä”, Jukka Häkkinen muistuttaa.

Valo kuitenkin välittää näkymän silmään ja saa aivoissa aikaan väriaistimuksen. Valon vähetessä värit erottuvat yhä huonommin, ja jossain vaiheessa kaikki alkaa näyttää pelkästään harmaalta ja sen eri sävyiltä – kunnes pilkkopimeässä ei näy enää mitään.

Vähäisessä valossa tappisolujen väriherkkyys ei sinänsä heikkene, mutta niihin osuvien fotonien määrä on niin pieni, että aistimusta väreistä ei synny.

Samalla niiden rinnalla verkkokalvolla sijaitsevien, hämäränäöstä vastaavien sauvasolujen toiminta tulee hallitsevaksi. Sauvat tavallaan jyräävät tapit alleen – myös lukumäärällään, sillä niitä on noin 120 miljoonaa.

Tappisolut ovat keskittyneet verkkokalvon keskikuoppaan eli foveaan, tarkan näön alueelle. Sauvasolut kattavat muun osan verkkokalvosta.

”Tappisolujen pitää toimia hyvin tehokkaasti, sillä kirkkaassa päivänvalossa niihin voi osua miljoona fotonia sekunnissa. Sauvasolut sen sijaan ovat ikään kuin haaveja, jotka keräävät hieman pidemmällä ’valotusajalla’ vähäisestäkin valosta näköaistimuksen syntyyn riittävän määrän fotoneja.”

Sauvasoluissa kehittyy hämärässä rodopsiinia eli näköpurppuraa, jonka ansiosta ne ovat herkkiä hyvin himmeälle valolle. Sauvasolut eivät kuitenkaan erota värejä, vaan ainoastaan harmaan eri sävyjä.

Näköpurppura hajoaa nopeasti kirkkaassa valossa, mutta sen muodostuminen on hidasta. Valoisista sisätiloista yötaivaan alle siirryttäessä taivaalta alkaa erottua tähtiä vain verkkaan. Täydelliseen pimeäadaptaatioon menee aikaa puolisen tuntia.

Näköpurppuran ansiosta sauvasolut ovat herkimpiä sinivihreillä aallonpituuksilla, minkä vuoksi hämärässä työskennellessä ja erilaisissa merkkivaloissa käytetään yleensä punaista. Sauvasolut eivät siihen reagoi eikä näköpurppura sen vaikutuksesta hajoa, mutta tappisolut erottavat sen helposti.     

Värien aistiminen on tulosta evoluutiosta, joka on ollut paitsi hidasta myös vaiheittaista. Gangliosoluissa tapahtuva sini-keltakoodaus kehittyi jo yli 100 miljoonaa vuotta sitten.

Dinosaurusten valtakaudella eläneet varhaiset pikkunisäkkäät olivat hämäräaktiivisia, joten niiden silmät sopeutuivat toimimaan niukassa valaistuksessa. Kattavalle värien näkemiselle ei ollut tarvetta.

Puna-viherkoodaus kehittyi kymmeniä miljoonia vuosia myöhemmin, vasta nykyisten kädellisten esivanhempien alkaessa viihtyä päivänvalossa. Silloin oli etua, jos esimerkiksi kypsät ja ravinteikkaat hedelmät erotti raakileista.   

Kehityksen myöhäisestä vaiheesta kertoo myös se, että useimmat muut nisäkkäät, kuten kissat, koirat ja hevoset, eivät erota punaista väriä. Eivät myöskään härät, vaikka etiikaltaan kyseenalaisessa espanjalaisessa kansanhuvissa sarvipäitä ärsytetään punaisella muletalla.

Kuvat: Markus Hotakainen

 

 

 

Sateenkaaren värit kertovat valon luonteesta ja kirkkaus sadepisaroiden koosta

Sateisena päivänä pilvien jo hiljalleen hajaantuessa taivaalle voi leimahtaa upea sateenkaari. Silloin aurinko pilkahtaa pilvien raosta ja paistaa väistyvän sateen langettamiin pisaroihin.

Sateenkaari näkyy aina vastakkaisella puolella taivasta kuin aurinko, koska valo heijastuu sadepisaroista takaisin tulosuuntaansa. Pelkkä valon heijastuminen vesipisaroista ei kuitenkaan riitä selittämään sateenkaaren värejä, siihen vaaditaan myös valon taittumista.

Kun auringonvalo taittuu ja heijastuu vesipisaroissa, valkoiselta näyttävä auringonvalo hajoaa – kirjaimellisesti – sateenkaaren väreihin. Värejä on seitsemän paitsi jos on samalla kannalla kuin tieteiskirjailija Isaac Asimov. Hänen mukaansa "indigo ei ole koskaan tuntunut olevan sen väärti, että se ansaitsisi tulla pidetyksi omana värinään".

Yleensä kuitenkin puhutaan seitsemästä väristä. Punainen, oranssi, keltainen, vihreä, sininen, indigo ja violetti ovat väreinä sitä hehkuvampia ja kirkkaampia, mitä suurempia pilvistä tipahtelevat vesipisarat ovat.

Kun auringonvalo kulkee sadepisaran pinnan läpi, valon kulkusuunta muuttuu, koska se siirtyy harvemmasta aineesta tiheämpään: ilmasta veteen.

Valo heijastuu kertaalleen pisaran sisäpinnasta ja kun se taas poistuu vesipisarasta, sen kulkusuunta muuttuu jälleen: tällä kertaa se siirtyy tiheämmästä aineesta harvempaan eli vedestä ilmaan.

Kahden taittumisen ja yhden heijastumisen seurauksena valon kulkusuunta muuttuu vesipisarassa aina saman verran, 42 astetta. Siksi sateenkaari näkyy taivaalla vastapäätä aurinkoa ja kaartuu ilmiötä ihailevan katsojan pään varjon ympärille 42 asteen etäisyydellä.

Valon kulkusuunta ei kuitenkaan muutu täsmälleen 42 astetta, sillä valon eri aallonpituudet eli värit taittuvat eri tavoin: punainen taittuu vähiten ja violetti eniten. Siksi punainen väri on sateenkaaren ulkoreunassa ja violetti sen sisäreunassa. Niiden välissä ovat muut värit.

Usein kirkkaan sateenkaaren ulkopuolella näkyy toinen, hieman himmeämpi sivusateenkaari. Sen värit ovat samat kuin pääsateenkaaressa, mutta niiden järjestys on päinvastainen: ulkoreunalla on violetti ja sisäsyrjällä punainen.

Syynä päinvastaiseen järjestykseen on, että sivusateenkaaren synnyttävä valo heijastuu vesipisaroiden sisällä kahteen kertaan, kun pääsateenkaaren aikaansaava valo heijastuu vain kerran.

Sivusateenkaari on himmeämpi, koska sen valo heijastuu sadepisaran sisällä kahdesti. Jokaisessa heijastumisessa valoa menee hivenen haaskoon.

Sateenkaaren kirkkauden lisäksi ylimääräinen heijastus pisaran sisällä vaikuttaa myös kaaren kokoon. Valon kulkusuunta muuttuu kahden taittumisen ja kahden heijastumisen tuloksena noin 51 astetta. Siksi sivusateenkaari kaartuu katsojan pään varjon ympärillä 51 asteen etäisyydellä ja sen vuoksi sivusateenkaari on aina pääsateenkaaren ulkopuolella.

Pääsateenkaaren sisäreunalla näkyy toisinaan interferenssikaaria, joita ei pidä sekoittaa sivusateenkaareen. Joskus useita kertoja toistuvat vihreän ja sinisen sävyt johtuvat valon aaltoliikkeestä: interferenssissä hieman eri vaiheissa olevat aallot vahvistavat tai heikentävät toisiaan.

Pää- ja sivusateenkaaren välissä on niin sanottu Aleksanterin tumma vyöhyke. Sen alueelta tulee katsojan suuntaan vähemmän valoa kuin pääsateenkaaren sisäpuolelta ja sivusateenkaaren ulkopuolelta.

Nimensä vyöhyke on saanut Aleksanteri afrodisialaiselta, joka pohti sateenkaaren syntyä vuoden 200 tienoilla. Auringonvalon hajoamisen väreihin selitti Isaac Newton noin 1500 vuotta myöhemmin.

Sydänkesän keskipäivällä aurinko kohoaa eteläisessä Suomessa yli 53 asteen korkeudelle, joten silloin taivaalla ei voi näkyä sateenkaaria ollenkaan. Sekä pää- että sivusateenkaari jäävät taivaanrannan alapuolelle.

Sen vuoksi sateenkaaria näkyykin eniten alku- ja loppukesästä. Kun aurinko laskee alemmas, tulee ensin näkyviin sivusateenkaari – jos se on näkyäkseen – ja sitten myös pääsateenkaari.

Toisinaan horisonttia viistävää sateenkaaren voimakkaan punaista yläreunaa ei välttämättä edes tunnista sateenkaareksi. Vasta kun kaari auringon hitaasti vajotessa kohoaa ylemmäs, tulee näkyviin myös muita värejä ja ilmiön tunnistaa sateenkaareksi.

Aamupäivän puolella taivaanrantaa hipova sateenkaari tietysti vähitellen katoaa, kun auringon kipuaa yhä ylemmäs – edellyttäen, että sateenkaari pysyttelee taivaalla näkyvissä niin pitkään.

Kuvat: Markus Hotakainen

Mars-tutkija tunnustaa: valehtelimme yleisölle! Katso kuvat!

Mars-tutkija tunnustaa: valehtelimme yleisölle! Katso kuvat!

 

Sosiaalista mediaa on "kuohuttanut" muutaman päivän (ehkä viikkojen ajan, en ole seurannut) joku ihmeen mekko. Ilmiötä on päivitelty uutisissakin: lieneekö kolttu sinimusta vai valkokultainen, vai olisivatko raidat ehkä kretuliineja? Epäilen ettei asia ole riittävän tärkeä ansaitakseen uutisaikaa yllämme hiilenmustana leijailevalta ilmastonmuutokselta, punaiselle painuvalta työttömyydeltä tai vaaliehdokkaiden tasaisen harmaanruskealta massalta... mutta minkäs teet, viihde myy.

En viitsi edes raapaista mekon pintaa. Tai no, ehkä palaan siihen myöhemmin. Ensin käytän värijupakkaa aasinsiltana, tehdäkseni Suuren Paljastuksen.

 

Kuvien sensurointia

Olin vuosia tiiviisti mukana Mars Expressin HRSC-kameran tiedetiimissä. Ensimmäiset laitteen ottamat tarkat kuvat Marsista saatiin vuoden 2004 alussa. Katselimme Marsia täysin uudenlaisen vekottimen linssien läpi: valo rekisteröityy laitteen yhdeksälle erilliselle CCD-kennolle. Värejä, stereokuvaa ja fotometriaa yhdellä kertaa. Hulppeaa. (Laite jatkaa ainutlaatuisen aineiston tuottamista tänäkin päivänä.)

Hieno projekti, mutta sillä on yksi tummanpuhuva luuranko kaapissa. Salasimme tietoa, ihan tarkoituksella. (Mutta ennen kuin ehdit innostua, kyse ei kuitenkaan ollut otsikkokuvassa näkyvistä "Marsin kasvoista" (ESA / DLR / FU Berlin, CC BY-SA 3.0 IGO). Mutta aika lähelle osui.)

Ensimmäisten PR-kuvien julkaisun jälkeen tiimissä tehtiin hyvin nopeasti päätös: täyttä väriskaalaa ei missään nimessä saanut enää ikinä käyttää PR-kuvissa. Syynä olivat ihmissilmää herkemmät CCD-kennot. Kuvissa yksinkertaisesti näkyi aivan liikaa. Mutta vahinko oli jo tehty - muutamaa julkisuuteen ehtinyttä kuvaa ei enää voitu vetää takaisin.

Julkaistut kuvat oli tarkoituksella tehty mahdollisimman värikkäiksi, jotta kaikki pinnan erot (sekä kameran ylivoimainen suorituskyky) olisivat katsojalle selkeitä. Ikävä kyllä jotkut alueet hohtivat kuvissa tummanvihreinä tai tummansinisinä. Sekä media että yleisö innostuivat: Marsin lämpimien rinteiden kupeesta oli viimein löytynyt kasvillisuutta! Kanavissa virtaa aivan selvää vettä!! Saimme pilvin pimein tiedusteluja: koska julkistamme löydön virallisesti; mitä sitten tapahtuu; joko koko planeetta on pistetty karanteeniin?

Kävi aivan liian työlääksi selittää aivan kaikille salaliittoteoreetikoille, että "kyse on vain dyyneistä".

Marsilla on punertava pinta, mutta juuri dyynien materia tuppaa olemaan keskivertoa tummempaa - eli vähemmän punaista. Kun punainen ei dominoi, vihreä ja sininen väri pääsevät paistamaan läpi. Efekti tehostuu entisestään, jos värikanavien info on vielä levitetty "tappiinsa". Ja juuri näin kävi ensimmäisten PR-kuvienkin kanssa.

Onneksi asia unohdettiin julkisuudessa pian. Ja tuon episodin jälkeen PR-kuvien värikylläisyys pidettiin visusti minimissä. Värit muokattiin sellaisiksi mitä keskivertokansalainen voisi Marsilta olettaa - tylsän ruskeaa, punertavankeltaisia sävyjä. Sinisen ja vihreän annetaan nousta selvästi esiin vain erikoistapauksissa.

 

Tyypillinen ongelma

Ilmiö on tuttu useimpien avaruusluotainten värikuvista. Kirjoitin runsas vuosi sitten tuoreen sinisen marsilaiskraatterin aiheuttamasta väärinkäsityskohusta. Silloinkin kyse oli siitä, että kuva tulkittiin helposti väärin. Näin käy, kun tottumaton katsoja käyttää hyväkseen omaa kokemustaan eikä kuvan tietoja. Rytäkässä jää ymmärtämättä, ettei luotainten kameroilla edes voida ottaa sellaisia kuvia kuin mitä ihmissilmä näkisi. Kyse on lähes poikkeuksetta väärävärikuvista.

Aina ongelma ei tosin ole vain kuvassa. Etenkin kaasukehään sukeltavat planeettaluotaimet kärsivät joskus epämääräisestä valaistuksesta. Tämä käy ilmi viereisestä Venera 13 -laskeutujan ottamasta panoraamasta. Ylempi on alkuperäinen Venuksen kellertävän kaasukehän kajon värjäämä kuva, alemmassa värikorjatussa versiossa taas erottuvat pintamaterian omat värit (Lähde: Neuvostoliiton Tiedeakatemia / Brown University, James Head). Korjaus saatiin aikaan oikealla törröttävää sävykarttaa kalibroinnissa käyttäen.

Kontrastin tai värisävyn epätavallisuus, oli se sitten todellista tai luultua, johtaa helposti koetun värin muuttumiseen. Alla oleva värikartta havainnollistaa tulkintaa (klikkaa kuva isommaksi). Jos kuva tulkitaan filtteröidyksi, värisävyjen tulkinta muuttuu radikaalisti.

 


Leikkiä valolla

Nelisensataa vuotta sitten elänyt kuuluisa fyysikko Sir Isaac Newton on tunnettu tarinasta omenan putoamisesta ja siitä, että se – ainakin tarinan mukaan – sai Newtonin keksimään painovoiman. Jo tätä ennen Newton oli ennättänyt kuitenkin tekemään pari pientä mullistusta optiikan alalla: hän rakensi ensimmäisen käyttökelpoisen peilikaukoputken vuonna 1668 ja pohdiskeli, että valkoinen valo koostuu itse asiassa kaikista väreistä. Hän näytti, että prismassa valo hajoaa eri väreiksi, koska eri värit taipuvat lasissa eri tavoilla.

Nyt toinen britti, taiteilija Chris Wood, on ottanut lasinpalaset ja niistä heijastuvat sekä niissä taipuvat valonsäteet ilmaisunsa välineiksi. Tuloksena on kaleidoskooppimaisia, geometrisia värien ja valojen pintoja, joissa optiikan lait hämärtyvät varjoihin ja leikkautuvat vaaleaan pintaan.

Tavallisten lasipintojen lisäksi väri- ja lasitaiteilijaksi itseään nimittävä Wood käyttää puoliläpäiseviä pintoja ja pinnoitettuja laseja, jotka heijastavat vain tiettyjä aallonpituuksia. Toisessa ääripäässä ovat vedellä täytetyt viinilasit, jotka tuottavat myös paljon jännittäviä optisia ilmiöitä.

Lisää kuvia ja taustaa on Chris Woodin nettisivuilla. Sieltä teoksia voi myös ostaa, joskin vastaavanlaisia värien ja valojen leikkejä on helppoa luoda myös itse kotioloissa. Itse tekemällä ne ovat lisäksi hauskempia ja opettavaisempia.

Sirkkaäyriäisen skannerisilmät

Teräsmiehen röntgenkatse on kohdannut voittajansa – ainakin melkein. 

Sirkkaäyriäisillä on jo entuudestaan tiedetty olevan erikoinen näkökyky. Niillä on silmissään 12 erilaista valoa aistivaa reseptoria, joista kukin toimii kapealla aallonpituusalueella. Ne pystyvät havaitsemaan valoa, jonka aallonpituus on välillä 300–720 nanometriä eli ultraviolettialueelta syvänpunaiseen. Lisäksi sirkkaäyriäiset erottavat toisistaan lineaarisesti ja ympyräpolarisoituneen valon. Suuresta reseptorimäärästään huolimatta sirkkaäyriäisen silmä on yllättävän huono erottamaan eri värejä toisistaan.

Ihmisen aistima aallonpituusalue on noin 400–700 nanometriä ja meille riittää värien aistimiseen kolme erilaista tappisolua: ne ovat herkkiä punaiselle, siniselle ja vihreälle valolle. Väriaistimus syntyy aivoissa tappisoluista tulevien signaalien perusteella. Sirkkaäyriäisten näköaisti toimii tyystin toisella tavalla.

Nyt australialaisen Queenslandin ja taiwanilaisen Cheng Kung -yliopiston tutkijat ovat löytäneet syyn sirkkaäyriäisten silmien vaatimattomaan suorituskykyyn. Äyriäisillä on samankaltainen verkkosilmä kuin hyönteisillä, missä ei vielä ole mitään uutta tai erikoista. Se koostuu tuhansista ommatideista, aistinsolujen muodostamista ryhmistä. Sirkkaäyriäisillä herkimmät ommatidit, joista löytyy kaikkia 12 eri aallonpituutta aistivia reseptoreita, sijaitsevat neljässä rivissä keskellä verkkosilmää. 

Sirkkaäyriäiset käyttävät silmiään eräänlaisina skannereina, jotka aistivat värit suoraan ilman saalistusta hidastavaa aivojen puuttumista peliin. Siinä missä sirkkaäyriäinen ei kykene erottamaan toisistaan esimerkiksi punaisen, sinisen tai vihreän eri sävyjä, se pystyy salamannopeasti tunnistamaan potentiaalisen saaliseläimen värin, mikä riittää saalistuksessa. Nopeasta värinmäärityksestä on etua sirkkaäyriäisten tyypillisissä elinympäristöissä eli värikylläisillä koralliriutoilla.

Tutkimus julkaistiin Science-lehdessä 24. tammikuuta (maksullinen artikkeli).

 

  

 

 

 

Neljä väriä ja kartta

Tiedetuubi on aloittanut yhteistyön australialaisen akateemisen nettijulkaisun The Conversationin kanssa kääntämällä heidän kiinnostavia artikkeleitaan suomeksi. Toisessa jutussa Adrian Dudek Australian kansallisesta yliopistosta kertoo, mitä on matematiikka ja miten siitä saa entistä kiinnostavampaa.


Vierailin jokin aika sitten paikallisessa lukiossa kertomassa oppilaille matematiikasta. Halusin osoittaa, että matematiikka voi olla hauskaa, ja näyttää, mistä matematiikassa oikein on kyse.

Kysyin oppilailta ensin, mitä mieltä he ovat matematiikasta. He kertoivat, etteivät ihmeemmin perustaneet yhteenlaskusta – sitä varten on olemassa taskulaskimet.

Minun oli kumottava harhakäsitys, että ”matematiikka” on sama asia kuin ”tylsä laskento”, ja se piti tehdä äkkiä, sillä pulpettien kätköistä alkoi jo ilmestyä älypuhelimia.

Pyysin oppilaita piirtämään Australian kartan osavaltioineen ja territorioineen, ja sitten värittämään sen. Vaatimuksena oli kuitenkin se, että vierekkäiset osavaltiot ja territoriot eivät saa olla samanvärisiä, koska se ei näytä kivalta.

Oppilaat kävivät tyytyväisinä työhön, sillä he kuvittelivat pääsevänsä pälkähästä matematiikan suhteen.

Kiertelin luokassa ihailemassa heidän kättensä töitä ja esitin sitten seuraavan kysymyksen:

Mikä on pienin määrä värejä, joilla Australian voi värittää vaaditulla tavalla?

Oppilaat vastailivat kilvan, vaikka jotkut olivatkin ottaneet käyttöön kaikki näkyvän spektrin värit. Jonkin ajan kuluttua he pääsivät yhteisymmärrykseen vastauksesta: kolme.

Onnittelin heitä oikeasta vastauksesta ja annoin heille kaksi uutta harjoitustehtävää.

1. Piirtäkää sellainen valtio osavaltioineen, että värejä tarvitaan vähintään neljä. Antakaa piirros sitten vieruskaverillenne ja pyytäkää tätä värittämään se.

2. Piirtäkää toinen valtio, jonka värittämiseen tarvitaan vähintään viisi väriä. Antakaa piirros vieruskaverillenne ja pyytäkää tätä värittämään se.

Oppilailla oli hauskaa heidän keksiessään omia valtioitaan ja nimetessään niitä. Ensimmäisessä tehtävässä oli omat haasteensa, sillä oikea tapa värittää ei ollut aina ihan ilmeinen.

Otsikkokuvassa on yksinkertaisin mahdollinen kartta, jonka värittämiseen tarvitaan neljä väriä.

Toisen tehtävän kanssa kävi juuri niin kuin olin olettanut. Se aiheutti pieniä kiistoja: kävi ilmi, että vaikka värien vähimmäismäärän piti olla viisi, kartat pystyi silti värittämään neljällä värillä.

Yksi kerrallaan kävimme läpi oppilaiden piirtämät kartat ja totesimme, että ne on mahdollista värittää vain neljällä värillä. Mitä ihmettä? Pyysin heitä yrittämään uudelleen – turhaan – ja paljastin heille sitten tunnetun matemaattisen lauseen, neliväriteoreeman:

Jokainen tasokartta voidaan värittää neljällä värillä siten, että kaksi vierekkäistä aluetta ovat aina erivärisiä.

Vaatimuksena on se, että kahden alueen välillä on rajaviiva, pelkkä rajapiste ei riitä tekemään alueista vierekkäisiä.

Kerroin oppilaille, että tässä on todennäköisesti ensimmäinen heidän kohtaamansa esimerkki todellisesta matematiikasta. Matematiikassa on nimittäin kyse ajatuksista, ei aritmetiikasta. Oppilaat halusivat tietää asiasta enemmän.

Kerroin, kuinka vuonna 1852 matemaatikko nimeltä Francis Guthrie väritti Englannin kreivikuntia ja huomasi tarvitsevansa ainoastaan neljää väriä. Hän kertoi havainnostaan veljelleen Frederickille lähettämässään kirjeessä, jonka veli välitti edelleen toiselle matemaatikolle.

Yli sadan vuoden ajan matematiikat yrittivät turhaan todistaa neliväriteoreemaa. Vuonna 1976 Kenneth Appel ja Wolfgang Haken vihdoin onnistuivat tehtävässä.

Kysyin oppilailta, miten teoreeman voisi todistaa oikeaksi. He ehdottivat, että voisimme piirtää kaikki mahdolliset kartat ja värittää ne sitten neljällä värillä. Sain heidät toisiin ajatuksiin toteamalla, että erilaisia karttoja on ääretön määrä.

Miten todistus sitten onnistuisi? Neliväriteoreema oli ensimmäinen merkittävä matemaattinen teoreema, joka todistettiin oikeaksi tietokoneen avulla.

Todistaakseen neliväriteoreeman Appel ja Haken turvautuivat matemaatikoiden suosimaan menetelmään, jonka nimenä on reductio ad absurdum. Se toimii seuraavalla tavalla:

Jos haluamme todistaa jotakin oikeaksi, oletamme, että se ei päde, jolloin matematiikka ei toimi. Olettamalla, että jokin ei ole totta, päädymme ristiriitaan tunnettujen tosiasioiden kanssa. Niinpä alkuperäinen oletus on väärä, joten todistusta kaipaavan väitteen täytyy olla tosi.

Appel ja Haken sovelsivat menetelmää olettamalla, että on olemassa kartta, jonka värittäminen edellyttää viiden värin käyttöä. Sitten he osoittivat, että on olemassa 1936 kartan joukko, josta yksikään ei voi olla osa heidän olettamaansa isompaa karttaa.

Sen jälkeen Appel ja Haken osoittivat, että jokaisen mahdollisen kartan täytyy pitää sisällään yksi näistä pienemmistä kartoista, mikä johti ristiriitaan.

Todistus vaatii suuren määrän tarkistuksia, joten Appel ja Haken laativat tietokoneohjelman, joka teki valtaosan työstä. Niinpä neliväriteoreemasta tuli ensimmäinen tietokoneella todistettu merkittävä matemaattinen teoreema.

Koska todistuksessa oli tietokoneella merkittävä rooli, monet epäilivät sen paikkansapitävyyttä: teoreemaa on käytännössä mahdoton todistaa ”käsin”.

Vuonna 1975 matemaatikko Martin Gardner esitti aprillipilana 110 alueen muodostaman "kartan", joka oli hänen mukaansa mahdoton värittää ainoastaan neljällä värillä. Gardnerin väitteen osoittaminen vääräksi vaati 24 vuotta ja melkoisen määrän tietokoneaikaa.

Silti yhä edelleen jotkut epäilevät neliväriteoreeman pätevyyttä.

Adrian Dudek

Australian National University

Värikkäitä tähtiä Markus Hotakainen Ti, 05/02/2013 - 15:16

Tähdet ovat erivärisiä ja tarkkaan katsoen sen huomaa jo paljain silmin. Tähden väri kertoo sen lämpötilan, mutta toisin kuin vesihanasta tuttu värikoodi: kylmimmät tähdet ovat punaisia ja kuumimmat sinisiä.

Todellisuudessa kaikki tähdet säteilevät kaikkia spektrin värejä, mutta tähden pinnan lämpötila määrää, millä aallonpituuksilla se säteilee voimakkaimmin. Siksi tähden väri riippuu sen lämpötilasta.

Syvänpunaisten tähtien pinnalla lämpötila kipuaa hädin tuskin 2 000 celsiusasteeseen. Punaiset tähdet ovat joko hyvin pieniä kääpiötähtiä tai valtavan suuria, kymmenien tai satojen miljoonien kilometrien läpimittaisia jättiläistähtiä. Niiden sisuksissa ydinreaktiot ovat hiipuneet ja ulko-osat ovat laajentuneet harvaksi kaasukerrokseksi.

Punainen jättiläistähti löytyy esimerkiksi Orionin tähdistöstä. Betelgeuze on elinkaarensa loppuvaiheissa oleva tähti, joka voi räjähtää supernovana milloin tahansa. Betelgeuze on läpimitaltaan satoja kertoja Aurinkoa suurempi: jos se olisi Aurinkokunnan keskustähti, sen viileä pinta olisi Marsin radan tuolla puolen.

Oranssi väri kertoo hieman kuumemmista oloista, noin 4 000 asteen pintalämpötilasta. Myös oransseja tähtiä löytyy kokoskaalan kummastakin päästä, sekä paljon Aurinkoa pienemmistä kääpiötähdistä että paljon Aurinkoa suuremmista jättiläisistä.

Oranssia tähteä voi katsella esimerkiksi Härän tähdistössä. Sen kirkkain tähti Aldebaran on läpimitaltaan ”vain” nelisenkymmentä kertaa Aurinkoa suurempi jättiläistähti.

Keltaiset tähdet, joiden pintalämpötila on noin 6 000 astetta, ovat tutuimpia, sillä Aurinko on yksi niistä. Ajomiehen kirkkain tähti Capella on puolestaan kahden kaksoistähden muodostama järjestelmä. Kirkkaampi kaksoistähdistä muodostuu kahdesta keltaisesta jättiläistähdestä, jotka ovat kooltaan noin kymmenen kertaa Aurinkoa suurempia.

Aurinkoa kuumempien, noin 7 500-asteisten tähtien väri on kellanvalkoinen tai vaaleankeltainen. Ne ovat kooltaan usein samaa luokkaa kuin Aurinko, mutta matkalla kohti jättiläisvaihetta. Vaaleankeltainen tähti on esimerkiksi Pienen koiran Procyon. Se on noin kaksi kertaa Aurinko suurempi, mutta useita kertoja kirkkaampi.

Tähdet, joiden pintalämpötila on noin 10 000 astetta, ovat valkoisia. Huomattava osa paljain silmin näkyvistä tähdistä kuuluu tähän ryhmään. Syynä on niiden kirkkaus: kirkkaat, valkohehkuiset tähdet näkyvät kauempaa avaruudesta kuin himmeät, punaiset kääpiötähdet, jotka ovat Auringon lähiympäristön tyypillisimpiä tähtiä.

Koko taivaan kirkkain tähti, Sirius, on väriltään valkoinen. Se ei ole poikkeuksellisen kirkas, ainoastaan noin 25 kertaa Aurinkoa kirkkaampi, mutta se on viidenneksi lähin tähti ja loistaa siksi kirkkaasti öisellä talvitaivaalla.

Vielä kuumemmat tähdet hehkuvat sinertävänvalkoista valoa. Niiden pintalämpötila on peräti 20 000 astetta. Esimerkiksi Orionin tähdistön Rigel on superjättiläinen, jonka kirkkaus on noin 40 000 kertaa suurempi kuin Auringon.

Toisaalta sinertävänvalkoisia, voimakkaasti säteileviä tähtiä on myös nuorissa, vain kymmenien tai satojen miljoonien vuosien ikäisissä tähtijoukoissa. Esimerkiksi Härän tähdistössä sijaitsevassa Plejadien tähtijoukossa on sinertävänvalkoisia tähtiä.

Kaikkein kuumimmat tähdet on väriltään sinisiä. Ne ovat niin ikään superjättiläisiä, jotka voivat säteillä miljoona kertaa voimakkaammin kuin Aurinko. Korkean lämpötilan takia suuri osa säteilystä on silmille näkymätöntä ultraviolettisäteilyä. Orionin tähdistössä on useita jättiläistähtiä ja siitä löytyy myös sinisenä loistava tähti: Alnitak on Orionin ”vyön” vasemmanpuoleinen tähti.