Mikä tekee meistä ihmisiä?

Kuva: Vector Open Stock / Flickr
Kuva: Vector Open Stock / Flickr
Lähde: xkcd.com/1338

Otsikon kysymys on rassannut meitä luultavasti siitä lähtien, kun olemme olleet jollain tasolla tietoisia olemassaolostamme. Olemme päivänselvästi erilaisia kuin mammutit, hirvet, leijonat, haikarat tai rupikonnat.. mutta kuinka se "ihmisyys" määritellään? Mikä erottaa meidät kaikista muista - ja kuinka olemme kehittyneet niin ylivoimaisesti muita dominoivaksi lajiksi?

Seuraavassa lista ihmisille usein erityisen ominaisina pidettyjä asioita. Tarkastellaanpa niitä lähemmin.

  1. Elämme varsin pitkään. Monet eläimet tosin elävät paljon pidempään.
  2. Olemme suureksi osaksi karvattomia, mutta paksu rasvakerros kyllä löytyy. Muitakin karvattomia nisäkkäitä toki on, eikä rasvan jakautuminen kehossamme juurikaan eroa lähisukulaisistamme. Rasvaa meillä toki on roimasti enemmän.
  3. Kuljemme kahdella jalalla (kävellessä itse asiassa suurimman osan ajasta yhdellä!). Nousimme pystyyn seitsemisen miljoonaa vuotta sitten. Kenguruiden ja jättiläismuurahaiskävin ohella olemme ainoita pysyvästi pystyasennossa kulkevia nisäkkäitä. Aikoinaan ilmeisen tehokkaasti metsästäneet teropodit, esimerkiksi tyrannosaurus, kulkivat myös samalla tavoin, hännällään menoaan tasapainottaen. Niiden jälkeläiset, linnut, käyttävät tätä taitoa vieläkin, kuten muutamat muutkin lajit. Ja useat kädelliset liikkuvat hetkittäin kahdella jalalla.
  4. Meillä on näppärät kädet. Vastakkaisia peukaloita tosin löytyy monilta eläimiltä, esimerkiksi pandoilta. Ja vaikka ihmisellä onkin ylivoimaisen tarkka pinsettiote, se on myös useilla apinoilla varsin pitkälle kehittynyt. Ja onhan niitä muunlaisiakin tarkkaan toimintaan kykeneviä tarttumaelimiä - esimerkiksi norsuilla ja mustekaloilla.
  5. Käytämme työkaluja. Ratkaisemme niiden avulla oman kehomme vajavaisuudesta johtuvia ongelmia, kuten kuinka liikkua nopeammin tai yltää pidemmälle. Työkaluja tosin käyttävät myös simpanssit, krokotiilit, korpit, papukaijat - eläinlista on varsin pitkä. Osa valmistaa työkalunsa huolella, osa taas käyttää ympäristöstä löytyviä valmiita tavaroita "vähän sinnepäin".
  6. Olemme kaikkiruokaisia. Esi-isiemme hampaat muuttuivat sitä tasapaksummiksi, mitä lähemmäs Homo sapiensia kehityksessä päästiin. Mitkään hampaat eivät ole erityisen kehittyneet, mutta silti riittävän erikoistuneet että ne sopivat niin lihan kuin kasvistenkin syömiseen. Ja kaikkiruokaisia eläimiä löytyy toki monia muitakin.
  7. Kypsennämme ruokaamme lämmittämällä ja saamme siten suhteellisen vähällä vaivalla ravinnosta enemmän irti. Ainoastaan erityisen hyvin opetetut eläimet osaavat kokata samalla tavoin. Siltikin niistä monille maistuu tavalla tai toisella kypsentynyt ruoka, jossa ravintoaineet ovat jo valmiiksi pilkkoutuneet. Monet pedot syövät esimerkiksi mädäntynyttä lihaa, linnut syöttävät poikasilleen osaksi sulanutta ruokaa, ja vaikkapa norsut ja tilhet popsivat mielellään käyneitä marjoja ja hedelmiä.
  8. Meillä on erityisen iso pää, johtuen kopan sisällä olevista suurista aivoista. Aivomme ovat energiasyöppöjä, joten ruuan valmistustehokkuus ja ravintopitoisuus kulkevat käsi kädessä pään koon kanssa. Ihmissuvun kuupan suurentuminen huipentui neandertalinihmiseen, jonka aivot olivat neljänneksen isommat kuin meillä, noin 1600 cm3. Aivomme ovat eläinlajien vertailussa hyvin isot, mutta eivät täysin ylivoimaiset vaikkapa delfiineihin verrattuna. Toisaalta mustekalat ja jopa mikkiriikkiset hyppyhämähäkitkin ovat suuriaivoisia, mutta niiden hermosto on rakentunut tyystin eri tavalla. Kaskelottien aivot taas ovat eläinkunnan historian suurimmat, ja niiden pää on kattaa kehosta jopa kolmanneksen. Kannattaa muistaa, ettei aivojen koko kerro suoraan älykkyydestä - eikä älykkyyden tarvitse välttämättä olla ihmisen kaltaista.
  9. Olemme tietoisia, ajattelemme. Joku voisi kutsua tätä sieluksi, minäksi, tai itseksi. Mutta jälleen: Vaikkemme tiedä mitä tuo todella tarkoittaa edes meissä itsessämme, voimme varsin helposti huomata muidenkin eläinten osoittavan selkeätä itsetietoisuutta.
  10. Kommunikoimme. Käytämme symboliikkaa ja abstraktia ajattelua. Piirrämme, puhumme ja kirjoitamme. Mutta sekään ei ole kovin ihmeellistä, kun ottaa huomioon sen kuinka vähän vielä ymmärrämme erilaisten lajien viestintää. Monilla lajeilla esiintyy kielellisiä symboleja. Sellaisia tarvitaan jo niinkin yksinkertaisissa asioissa kuin mehiläisten "kertoessa" toisilleen ruokapaikasta tai mangustien viestiessä vaaran suunnasta. Abstrakti ajattelu on tarpeen vaikkapa työkalun tekemisessä tai johtopäätelmiä ja suunnittelua vaativassa ongelmanratkaisussa. Koko ja muut viittomaan opetetut apinat ovat osoittaneet yllättävää kielellistä lahjakkuutta. Jopa huumoria.
  11. Meillä on kulttuuria. Olemme tehneet jo kymmenien vuosituhansien ajan symbolisia tuotteita, kuten luolamaalauksia, Venus-patsaita, kaulakoruja. Kulttuurin avulla opetamme toisiamme, huolehdimme ja välitämme toisistamme. Samaa esiintyy myös eläimillä: Miekkavalailla, delfiineillä ja simpansseilla on selkeitä alueellisia käytös- ja kielieroja, ja ne osaavat eri asioita. Eläimet myös vaikuttavat tuntevan estetiikkaakin: muutamien lajien linnut keräilevät nättejä(?) tavaroita seremoniallisiin kasoihin, ja viittomaan opetetut apinat kertovat suoraan maalaavansa asioita ja tunteita.
  12. Harrastamme seksiä ympäri vuoden, eivätkä hedelmällisyysjaksot erotu tänä aikana ulkoisesti mitenkään. Biologisesti ajateltuna tämä tiivistää parisuhdetta ja helpottaa jälkeläisten hoitoa. Ja, aivan kuten ihmiset, myös muut eläimet harjoittavat seksuaalisuuttaan paljon laajemminkin kuin vain suvunjatkamistarkoituksessa. Esimerkkinä vaikkapa bonobot, joille seksi on jatkuvaa ja yhteisön koossapysymistä tukevaa stressinhallintaa.
  13. Hyödynnämme muita lajeja. Koirat, kissat, lehmät, hevoset, lampaat - emme tulisi toimeen ilman niitä. Emme kuitenkaan ole yksin, sillä symbioottisista suhteista löytyy pilvin pimein esimerkkejä luonnosta. Muurahaiset lypsävät kirvoja ja kasvattavat sieniä, kalat ja linnut puhdistavat toisten eläinten ihoa ja haavoja, ja linnut näyttävät ihmiselle mehiläispesän paikkoja. Mitä tulee lemmikkieläimiin, niin.. Koko-gorillalla oli kissanpentuja, ja netti on pullollaan videoita oudoista mutta niin söpöistä eläinystävistä. Koira ja oranki, koira ja elefantti, ja villien petokissojen on huomattu joskus (tosin hyvin harvoin) huolehtivan saaliidensa pennuista. Lajienvälistä empatiaa siis esiintyy aivan luonnostaan.
  14. Muokkaamme ympäristöämme, luomme omat ekosysteemimme emmekä vain tyydy sopeutumaan olemassaolevaan. Olemme kansoittaneet kaikki mantereet, pystymme piipahtamaan avaruudessa ja valtamerten syvänteissäkin. Tässäkään emme ole ainoita. Myös vaikkapa patoja rakentavat majavat, tai mitkä tahansa pesiä rakentavat eläimet muokkaavat ympäristöään.
  15. Olemme tämän planeetan valtalaji, se lienee selvää. Vai onko sittenkään - tarvitsemmehan kuitenkin helposti rikkoontuvaa teknologiaa olemassaolomme ylläpitämiseen. Torakoita, rottia ja muita tuhoeläimiä pidetään usein meitä kestävämpinä tai opportunistisempina. Ja eri lajien mikrobit täyttävät koko planeetan kalliot kilometrien syvyyteen.
Lähde: xkcd.com/1338

Kuva: Maapallolla elävien suurten nisäkkäiden massat toisiinsa vertailtuna. http://xkcd.com/1338/

Tarkemmin katsottuna ainoastaan listattujen piirteiden yhdistelmä on meille erityinen.

Lista on myös tehty ihmiskeskeiseksi. Sen lähtökohta on, että ihmiset pitää erottaa muista. Kaksijalkaiset useampijalkaisista, kaikkiruokaisuus pelkästä lihan- tai kasvinsyönnistä. Ja listalla on myös tulkinnanvaraisia asioita: mitä todella on "kulttuuri" tai "kommunikaatio", tai "näppäryys" (ja miksi juuri "käsien")? Listassa ei mainita turhaa energianhukkaa, ympäristön kanssa tasapainossa elämistä, tai luonnonvalinnan toteutumista. Muut lajit päihittäisivät meidät nykyisin sellaisissa kategorioissa, mennen tullen.

Asiaa kannattaakin miettiä kunnolla toiselta kannalta. Miksi meidän tarvitsisi olla erilaisia kuin kaikki muut? Piileekö pohjalla jokin narsistinen tarve vetää tarkoitushakuinen raja 'meidän' ja 'niiden' välille?

 

Kehityksemme suunta

Vielä muutama kymmenen tuhatta vuotta sitten hmissuvun eri muotoja oli elossa useita. Pystyihmisen (Homo erectus) viimeiset rippeet elelivät ilmeisesti Jaavan saarella. Nykyihminen (H. sapiens) oli jo hyvää vauhtia levittäytymässä ympäri palloa, mutta ei ollut vielä syrjäyttänyt neanderthalin-, floresin- ja denisovanihmisiä.

Mikä sai meidät menestymään muita paremmin? Kukaan ei tiedä.

Ehkä olimme tehokkaampia metsästäjiä tai sopeuduimme paremmin ympäristön muutoksiin. Toisaalta, ainakin denisovan- ja neanderthalinihmiset elävät yhä. Lajimme sekoittuivat, ja me itse kannamme yhä heidän geenejään. Me olemme eri lajien hybridejä.

Ja me myös kehitymme yhä. Evoluutio on antanut meille (joillekuille ainakin) laktoosinsietokyvyn, mahdollistaen ravinteikkaan maidon käytön läpi elämän. Muutos on tapahtunut viimeisen 10 000 vuoden aikana useaan kertaan eri puolilla planeettaa. Ja olemme saaneet monia muitakin pieniä perinnöllisiä lahjoja ja 'kirouksia'. Evoluutiomme ei ole loppunut.

Nykyisin kuitenkin vaikutamme itse luonnon valintapaineisiin huomattavasti: Ehkäisykeinot, hedelmöityshoidot, terveyden keinotekoinen parantaminen, niilllä on merkitystä. Se, millaisiksi evoluutio lajimme vielä muokkaa, jää nähtäväksi.

 

Juttu pohjautuu rungoltaan ympäristötieteen lehtori Timo Vuorisalon esitelmään, joka pidettiin Turussa lauantaina 7.2.2015. Luento oli osa Turku Science Cafen yleisöluentotarjontaa. Tilaisuuksia järjestetään muutaman viikon välein.

Tässä jutussa on esitelty ominaisuuksien moninaisuutta Wikipedian artikkeleiden avulla. Vaikka se ei missään nimessä olekaan virheetön tietolähde, etenkin lähteistetyt Wikipedia-artikkelit antavat nopeasti hyvän ja helposti ymmärrettävän käsityksen ilmiöiden laajuudesta.

Solujen kieli muodostuu molekyyleistä

Kuva: Donezist
Kuva: Donezist

Tiedetuubi tekee yhteistyötä Tieteellisten seurain valtuuskunnan Tieteessä tapahtuu -lehden kanssa. Julkaisemme Tutkimusta Suomessa -sarjassa ilmestyneet artikkelit, joissa esitellään suomalaisissa yliopistoissa ja tutkimuslaitoksissa tehtävää tieteellistä tutkimustyötä. Sarjan toimittajina ovat tietokirjailijat Ari Turunen ja Markus Hotakainen.

Kehitysbiologiassa tutkitaan eliöiden kasvua ja kehitystä. Pitkään oli hämärän peitossa, miten alkujaan samanlaiset solut tietävät kehittyä erilaisiksi elimiksi ja muiksi kudoksiksi. Tutkimuksen perusta laskettiin jo 1920-luvulla, mutta todellista läpimurtoa jouduttiin odottamaan kymmeniä vuosia. Nyt solujen kieli tunnetaan ja näköalat ovat huikeat. Tutkimuksen eturivissä on akateemikko Irma Thesleffin johtama ryhmä Helsingin yliopiston Biotekniikan instituutissa.

Kehitysbiologian peruskysymys on se, miten solut tietävät mitä niistä tulee isona. Hedelmöittyneessä munasolussa on kaikki solujen kasvuun tarvittava tieto: se on kirjattuna isältä ja äidiltä saatuihin geeneihin. Niiden sisältämän informaation perusteella solu lähtee jakautumaan. Se, miten solut osaavat erilaistua ja sijoittua oikeille paikoille, perustuu kuitenkin solujen väliseen kommunikaatioon. Solussa itsessään ei voi olla siihen tarvittavaa tietoa, koska jokaisessa solussa on samat geenit.

"Käytännössä solun erilaistuminen perustuu siihen, että se alkaa lukea tiettyjä geenejä: jotkut geenit se 'avaa' ja toiset se 'sulkee'. Tieto siitä, mitä geenejä tietyn solun pitää lukea, on peräisin muilta, sen ympärillä olevilta soluilta. Ja se on nimenomaan meidän tutkimuskohteemme", Irma Thesleff toteaa.

Kun eri elimet lähtevät kehittymään, ne saavat alkunsa pienestä rykelmästä soluja, jotka ovat determinoituneet erilaisemmiksi kuin niiden ympäristössä olevat solut ja niistä muodostuu tietty elin tai ruumiinosa. Muutamasta sadasta tai ehkä vain muutamasta kymmenestä "alkuperäisestä" solusta lähteneen kehityksen aikana elimeen tulee ulkopuolelta lähinnä vain verenkiertoon ja hermostoon kuuluvia soluja.

Solurykelmän sisälläkin tapahtuu erilaistumista, koska muuten esimerkiksi sydämestä ei tulisi toimivaa elintä, vaan ainoastaan tietynlaisten solujen muodostama pallo. Ja tässä tullaan jälleen solujen välisen kommunikaatioon. Kehityksen kuluessa sitä ei tapahdu niinkään solurykelmän ja sen ympäristön välillä, vaan nimenomaan tietyn elimen muodostavien solujen välillä.

"Esimerkiksi hampaaksi kehittyvä solurykelmä voidaan siirtää hiireen, vaikkapa munuaiskapselin alle, missä on kasvun kannalta hyvä paikka, ja siitä kehittyy täydellinen hammas. Täysin uudesta ympäristöstä riippumatta."

Pitkät perinteet

Miten solut sitten kommunikoivat toistensa kanssa? Biotekniikan instituutissa on tällä hetkellä kaksikin tutkimusryhmää, jotka keskittyvät solujen väliseen viestintään. Thesleff johtaa toista ryhmää ja Marja Mikkola, joka alkujaan tuli hankkeeseen molekyylibiologiksi, johtaa toista.

Ryhmillä on paljon yhteistä laboratoriosta ja rahoituksesta laborantteihin ja opiskelijoihin, mutta karkeasti jako menee niin, että Thesleffillä tutkimuskohteina ovat hampaat, Mikkolalla karvat ja rauhaset.

Tutkimusryhmät jatkavat alan vanhaa traditiota Suomessa. Thesleffin väitöskirjaohjaajana oli hänen setänsä, kokeellisen patologian professori Lauri Saxén, joka tutki solujen välistä viestintää munuaisessa. Sitä ennen Saxén oli työskennellyt eläinlääketieteen professori Sulo Toivosen kanssa. Hänen laboratoriossaan tutkittiin sammakon varhaisia kehitysvaiheita.

Toivosen opettajana oli puolestaan ollut Gunnar Ekman, joka oli saanut oppinsa saksalaiselta Hans Spemannilta. Vuonna 1935 Nobelin lääketieteen palkinnon alkionkehitykseen liittyvästä tutkimuksesta saanut Spemann osoitti jo 1920-luvulla, että alkiossa on "signaalikeskus", joka määrää eri ruumiinosien ja elinten paikat.

Sen jälkeen yritettiin vuosikymmenten ajan selvittää, mitä nuo signaalit ovat ja miten ne välittyvät solulta toiselle. Molekyylibiologia ja biokemia olivat kuitenkin vielä niin alkutekijöissään, että tutkijat olivat pitkään vain oikeilla jäljillä: soluissa on jotain ainetta, joka välittää viestejä.

1980-luvun lopulta 1990-luvun puoliväliin mennessä arvoitus vihdoin ratkesi. Silloin selvisi, miten solut viestivät toistensa kanssa ja millä "kielellä" ne keskenään keskustelevat.

"Solujen kieli muodostuu signaalimolekyyleistä, liukoisista valkuaisaineista eli proteiineista. Toinen solu valmistaa niitä ja toisella solulla on reseptori, jolla se ottaa viestin vastaan ja reagoi sitten saamaansa signaaliin", Thesleff kertoo.

"Hienoa tässä on se, että erilaisten signaalien muodostamia perheitä on vain joitakin kymmeniä. Periaatteessa järjestelmä on siis yksinkertainen. Ja kaikissa eläimissä ja kaikissa elimissä on täsmälleen samat signaalit! Sitä ei olisi voitu koskaan edes kuvitella."

Solujen viestintää

Löytö on ollut mullistava myös kehitysbiologian itsensä kannalta. Olipa tutkimuskohteena mikä tahansa eläin tai mikä tahansa elin, kaikki tutkivat periaatteessa samaa asiaa – ja samalla kielellä.

"Aikaisemmin, kun alan kokouksessa alkoi puhua kehittyvästä hampaasta, ihmiset lähtivät pois tai ryhtyivät puuhaamaan jotain muuta, mutta nyt tilanne on aivan toinen. Kaikki kiinnostaa kaikkia ja kaikki oppivat toisiltaan."

Löytö antoi lisävalaistusta myös evoluutioon. Aiemmin dna on jo osoittanut, että kaikki eliöt ovat lähtöisin samasta, toistaiseksi tuntemattomasta alkumuodosta, ja samaa kertoo solujen viestintäjärjestelmä.

"Signaalimolekyylit ovat pysyneet ihan samanlaisina ja itse asiassa myös proteiineja koodaavat geenin osat ovat täysin samoja. Tietyn geenin voi siirtää vaikka sammakosta ihmiseen ja se toimii täsmälleen samalla tavalla, se tuottaa samaa signaalimolekyyliä."

Kehitysbiologisen tutkimuksen myötä on saatu uutta tietoa myös niin sanotusta "roska-dna:sta". Vielä jokin aika sitten oltiin siinä käsityksessä, että mahdollisesti jopa 90 prosenttia ihmisen dna:sta on täysin hyödytöntä "tilkettä". Niin ei kuitenkaan ole. Roska-dna:ssa sijaitsevat säätelyalueet ohjaavat viestijärjestelmän geenien kopiointia ja kertovat, missä ja kuinka paljon signaalimolekyylejä tuotetaan.

"Tämä selittää suurelta osalta myös sen, miksi ihmisellä ja norsulla on erilainen 'nenä' ja miksi ihmisellä ja koiralla on erilaiset korvat: evoluution myötä geenien säätelyalueet ovat muuttuneet siten, että signaaleja syntyy eri paikoissa ja erilaisia määriä."

Thesleffin ryhmän tutkimuskohteena ovat juuri nämä signaalit. Laboratoriossa on mahdollista tehdä transgeenisiä hiiriä, joilta esimerkiksi puuttuu jokin signaali. Nykytekniikka mahdollistaa jopa sen, että signaali saadaan puuttumaan vain tietystä kudoksesta tai sitten sitä voidaan tuottaa tavallista enemmän.

Vaikka solujen välisen kommunikaation peruskysymykset on jo selvitetty, tutkittavaa riittää vielä paljon. Esimerkiksi signaalireitin yksityiskohdat ovat vielä osin tuntemattomia: miten solu vastaanottaa signaalimolekyylin ja miten se siihen reagoi.

"Tällaisia asioita ei kannata tutkia hiirillä, vaan soluviljelmillä. Jos taas tutkitaan yksittäisten signaalien vaikutusta 'sytyttämällä' ja 'sammuttamalla' niitä, tutkimuskohteena käytetään usein matoja tai banaanikärpäsiä. Ihmiselle paras malli on kuitenkin hiiri, koska se on nisäkäs ja silläkin geenimanipulaatio on nykyisin helppoa."

Nykyisin signaalimolekyylejä pystytään valmistamaan synteettisesti, mutta aiemmin niitä saatiin vain eläimistä ja elävistä soluista. Luiden kasvuun vaikuttava BMP-proteiini (Bone Morphogenetic Protein) löytyi 1960-luvulla, kun yhdysvaltalainen ortopedi Marshall Urist eristi luujauhosta luiden paranemista edistävän aineen.

Vasta myöhemmin selvisi, että proteiini on nimenomaan yksi tärkeimmistä solujen välisen kommunikaation signaalimolekyyleistä. Lisäksi se vaikuttaa muuhunkin kuin luiden kasvuun. BMP:n on todettu pitävän huolta esimerkiksi siitä, että banaanikärpäsen siipi kasvaa tietyn muotoiseksi.

Kudoksissa signaalimolekyylejä syntyy kuitenkin hyvin pieniä määriä, mikä osaltaan selittää niiden pitkäaikaisen piilottelun. Nykyisin signaalimolekyylien valmistus on merkittävää liiketoimintaa. Niitä tuotetaan geeniteknologian keinoin ja tuloksena on täysin puhdasta "viestiainetta".

"Signaalimolekyylejä voi ostaa kuka tahansa, mutta ne ovat kalliita – pieni määrä jauhetta maksaa satoja euroja – ja siksi alan tutkimuskin on tyyristä. Perustutkimusta joutuu valitettavasti jatkuvasti perustelemaan rahoittajille. Sovelluksiin ei kuitenkaan päästä ilman perustutkimusta."

Vaikka solujen viestiliikenteen selvittäminen on perustutkimusta puhtaimmillaan, sen tuloksilla on kuitenkin ollut jo pitkään myös käytännön sovellutuksia. BMP-proteiinia on käytetty 1990-luvulta lähtien luun kasvattamiseen esimerkiksi plastiikkakirurgiassa.

Kiistellyt kantasolut

Tulevaisuudessa voi olla mahdollista tehdä asioita, joita ei vielä pystytä edes kuvittelemaan – samalla tavalla kuin vielä parikymmentä vuotta sitten ei olisi voitu kuvitellakaan, että kaikissa eläimissä ja kaikissa elimissä on täsmälleen samat signaalit. Yksi merkittävä, kaiken aikaa kasvava ja paljon lupauksia antava ala on kantasolututkimus.

"Tavoitteena on, että täysin erilaistumattomia kantasoluja saataisiin erilaistumaan vaikkapa luuksi, lihaksiksi tai hermosoluiksi. Siinä käytetään nimenomaan näitä signaalimolekyylejä ja jotta niitä opittaisiin käyttämään, on tiedettävä, miten ne toimivat ja vaikuttavat normaalissa kehityksessä."

Yhtenä tutkimuskohteena on se, miten samat signaalit saavat aikaan erilaisia vaikutuksia, kun kaikissa eläimissä ja kaikissa elimissä – kuten todettua – on täsmälleen samat signaalit. Siksi tarvitaan tietoa solujen historiasta. Erilaistumattomilla kantasoluilla ei kuitenkaan ole historiaa, vaan se täytyy luoda.

"Jos kantasoluista halutaan saada esimerkiksi sydänsoluja, niille annetaan ensin yhtä signaalimolekyyliä, sitten toista, kolmatta ja niin edelleen. Jossain vaiheessa joidenkin signaalien vaikutus pitää estää, jotta joku toinen signaali pääsee vaikuttamaan. Näin pyritään löytämään 'reseptejä', joiden avulla erilaistumattomista kantasoluista voidaan saada erilaistuneita, tiettyä kudosta muodostavia soluja."

Samat signaalit ovat hyvin usein syypäitä myös kehityshäiriöihin ja esimerkiksi syöpään. Elinten epämuodostumissa on yleensä kyse on eräänlaisesta kommunikaatiokatkoksesta: solut eivät saa signaaleja, jotka ohjaisivat niiden kasvua ja kehitystä. Syövässä puolestaan kommunikaatiossa tapahtuu virhe, jonka seurauksena solut jatkavat jakautumistaan, vaikka ei pitäisi.

"Kehityshäiriöissä ei kuitenkaan ole välttämättä kyse siitä, että signaali puuttuisi. Voi olla, että solulta puuttuu reseptori, joka tarvitaan signaalimolekyylin vastaanottamiseen. Syy saattaa löytyä myös geenistä, jonka pitäisi käynnistää signalointi, esimerkiksi mutaatio voi estää sen toiminnan. Kehityksen pysähtyminen johtuu kuitenkin siitä, että signaalien viestiketju syystä tai toisesta katkeaa."

Nyt ollaan jo siinä vaiheessa, että kehityshäiriöitä voidaan signaalimolekyylien avulla parantaa – tai ainakin aivan pian. Thesleffin ja Mikkolan ryhmä alkoi tutkia ektodysplasiini-nimistä proteiinia pian sen löytymisen jälkeen ja nyt sille on löytymässä käytännön sovellutus.

Ektodysplasiini on signaalimolekyyli, joka on välttämätön ihon pinnasta muodostuvien elinten, kuten esimerkiksi karvojen, rauhasten ja hampaiden, kehittymiselle. Kyseisen signaalireitin täytyy aktivoitua aivan elimen kehityksen alussa.

"Normaalin kehityksen tutkiminen on tärkeää, koska silloin tiedämme, miten sen pitäisi tapahtua. Sen myötä voimme sitten oppia, miksi kehitys menee joskus väärin tai jää kokonaan tapahtumatta. Ja sitten kun tunnemme erilaiset geeniverkostot, voimme yrittää vaikuttaa ihmisten sairauksiin", Thesleff toteaa.

Ihmisellä esiintyy harvinainen syndrooma, ektodermaalinen dysplasia, jota on vain pojilla, koska kyseinen geeni on x-kromosomissa. Syndroomasta kärsiviltä signaali puuttuu kokonaan, joten heillä on hyvin vähän hampaita, ohuet hiukset eikä lainkaan hikirauhasia.

"Hiirillä ja koirilla esiintyvä syndrooma pystytään jo parantamaan, kun vastasyntyneelle eläimelle ruiskutetaan suoraan suoneen synteettisesti valmistettua ektodysplasiinia. Silloin signaaliketju aktivoituu ja kehitys etenee normaalisti. Ensi syksynä Yhdysvalloissa on tarkoitus aloittaa kokeet hoidon soveltamisesta vastasyntyneisiin, joilla tiedetään olevan syndrooman aiheuttava geenivirhe. Se olisi ensimmäinen kerta, kun ihmisellä pystytään parantamaan tällainen kehityshäiriö."

Alkion kantasolututkimukseen ovat vaikuttaneet siihen liittyvät eettiset kysymykset. Shinya Yamanaka sai John Gurdonin kanssa vuoden 2012 Nobelin lääketieteen palkinnon osoitettuaan, että erilaistuneet solutkin voidaan palauttaa kantasoluiksi.

"Kukaan ei olisi uskonut, että se on ylipäätään mahdollista, eikä etenkään niin yksinkertaisella tavalla. Kun mikä tahansa solu pakotetaan ‘lukemaan’ kolmea tai neljää tiettyä geeniä, se palautuu kantasoluksi."

Menetelmä erilaistuneiden solujen palauttamiseksi takaisin kantasoluiksi vie pohjan kantasolututkimuksiin liittyviltä eettisiltä kiistoilta ja edistää perinnöllisten sairauksien tutkimusta. Potilailta voidaan ottaa hänen omia solujaan, palauttaa ne kantasoluiksi ja kokeilla sairaiden soluviljelmien avulla erilaisia hoitokeinoja. Ja muitakin sovellutuksia epäilemättä löytyy.

"Kun minulta aiemmin kysyttiin, voidaanko joskus kasvattaa uusia hampaita, olin hyvin skeptinen, mutta nyt kun kantasoluja voidaan tehdä erilaistuneista soluista, olen toiveikkaampi: jonakin päivänä se vielä onnistuu."

Artikkeli on alun perin julkaistu Tutkimusta Suomessa -artikkelisarjassa Tieteessä tapahtuu -lehden numerossa 2/2013.