Tiedetuubin kolme valmiustasoa

Liikennevalot Genevessä
Liikennevalot Genevessä

Tiedetuubia tehdään harrastuspohjalta muiden töiden ohessa. Koska niiden määrä ja intensiivisyys vaihtelevat kovasti, otamme käyttöön kolmiportaisen asteikon otsikkologossamme. Se ilmaisee kuinka ajantasaisesti sivustoa päivitetään.

Viime aikoina Tiedetuubi on ollut jälleen hiljainen, koska muut kiireet ovat vieneet kovasti toimituksen aikaa. Jotta arvoisa yleisömme voisi tietää mikä on milloinkin tilanne, otamme käyttöön liikennevaloista tutun kolmiportaisen päivitystahtiasteikon.

Värit ovat yllätyksettömästi punainen, keltainen ja vihreä (tai ei väri-indikaatiota lainkaan).

Kun sivun yllä olevaa logoamme ympäröivät punaiset sulkumerkit, on tahti hyvin hidas. Päivityksiä ei ole tulossa vähään aikaan.

Kun sulkumerkit ovat keltaiset, on tuorein päivitys tehty ihan vähän aikaa sitten ja uutta materiaalia on tulossa lähipäivinä.

Vihreät merkit – tai jos merkkejä ei ole lainkaan – merkitsevät varsin ripeää päivitystahtia. Uutta materiaalia tulee päivittäin, joskus jopa useamminkin.

Kuten logo yllä nyt 22.4.2025 ilmaisee, kohta tulee taas jotain! Viimeisen viiden viikon aikana on kertynyt paljon uutta videomateriaalia...

Miksi Mars on punainen? Uusi selitys haastaa vanhan ruosteteorian. Jari Mäkinen Ti, 25/02/2025 - 11:10
Punaista Marsin pintaa Opportunity-kulkijan kuvaamana
Punaista Marsin pintaa Opportunity-kulkijan kuvaamana

Kaikkihan sen tietävät, että Marsin punainen väri johtuu rautaoksidista eli ruosteesta. Mutta milloin ja. miten Mars ruostui? Tänään julkistettu tutkimus selittää, että Marsin rautapitoinen pöly on ollut paljon kosteampaa kuin aiemmin on oletettu. Mars muuttui punaiseksi kenties jo ammoin, jolloin nestemäistä vettä oli sen pinnalla paljon.

Kun tähtitaivaalla nyt selvästi näkyvää Marsia katsoo, se on selvästi punainen. Punainen väri tulee Marsin pinnalla olevan pölyn rautapitoisuudesta: kun rauta on reagoinut nestemäisen veden tai ilman veden ja hapen kanssa, on tuloksena ollut punaista ruostetta. 

Siis ihan samaan tapaan kuin täällä Maan pinnalla.

Miljardien vuosien aikana rautaoksidipitoinen pinta-aines on jauhautunut pölyksi ja tuuli on levittänyt sitä ympäri planeettaa. Vaikka nykyisin Marsin kaasukehä on varsin ohut eikä siellä näytä olevan vapaana virtaavaa vettä, punaista pölyä syntyy koko ajan lisää ja se leviää.

Tänään julkistettu tutkimus pohtii tarkemmin Marsin ruosteen tarkkaa koostumusta. Tämä avaa uusia näkökulmia siihen, millainen on ollut Marsin ilmasto ja olosuhteet pinnanna. Lopulta kyse on myös siitä, onko Mars ollut joskus elinkelpoinen.

Nythän se ei ole – ensimmäiset Marsin ihmisasukkaat, milloin he ehtivätkään paikalle, joutuvat elämään pinnan alla suojassa säteilyltä ja tiristämään hyvin hapanta vettä syvällä pinnan alla olevasta jäästä.

Mars avaruudesta kuvattuna

 

Avaruusluotainten tekemien havaintojen perusteella on päätelty, että suurin osa rautaoksidista on hematiiittia, joka muodostui pinnan jo ollessa varsin kuiva Marsin varhaisen hyvin kostean kauden jälkeen. Hematiitti olisi muodostunut miljardien vuosien aikana lähinnä kaasukehässä olleen veden ja hapen avustuksella.

Marsin pinta-aineesta rautaa on peräti noin 13 %.

Nyt kuitenkin uudet laboratoriotutkimukset viittaavat siihen, että hematiitin sijaan pääsyyllinen punaisuuteen ovatkin hydratoituneet rautaoksidikiteet eli ferrihydriitti eli Fe3+10O14(OH)2.

Ferrihydriitti muodostuu tyypillisesti viileän veden läsnäollessa, joten sen on täytynyt syntyä silloin, kun Marsissa oli vettä vielä pinnalla.

“Yritimme luoda laboratoriossa Marsin pölyä eri rautaoksidien avulla", sanoo tutkimuksen johtaja Adomas Valantinas, Brownin yliopiston tutkijatohtori Yhdysvalloissa, joka aloitti työnsä Bernin yliopistossa Sveitsissä Euroopan avaruusjärjestön Trace Gas Orbiter (TGO) -luotaimen lähettämiä tietoja tutkien.

"Havaitsimme, että ferrihydriitti sekoitettuna basalttiin vastaa parhaiten avaruusalusten Marsilla näkemiä mineraaleja."

Keinotekoista Marsin punaista pölyä

Keinotekoista Marsin pölyä.

 

Marsin pölyn jäljennöksen tekemisessä haastavaa oli saada aikaan tarpeeksi hienojakoista ainetta. Lopulta tutkijat saivat aikaan pölyä, jonka hiukkaskoko on noin 1/100 ihmisen hiuksen paksuudesta. 

Sen jälkeen he analysoivat näytteitään samoilla tekniikoilla kuin kiertoradalla olevat avaruusalukset, kuten Marsia kiertävä TGO. Se tekee Marsin pinnasta spektrihavaintoja, joiden perusteella saadaan pinta-aineesta sen ainesosien "sormenjäkiä".

Keinotekoisen Mars-pölyn "sormenjäljet" olivat samanlaisia.

Spektrikäyriä

Ferrihydriitin (vas) ja hematiitin (oik) spektrikäyrät Marsin pinnalla ja kiertoradalta tehtyjen havaintojen sekä laboratoriokokeiden perusteella. 

 

Muutkin ovat ehdottaneet jo aikaisemmin, että ferrihydriittiä saattaisi olla Marsin pölyssä, mutta Adomas tutkimusryhmineen on ensimmäinen, joka on pystynyt yhdistämään laboratoriokokeet ja Marsia kiertävän luotaimen tekemät havainnot toisiinsa.

*

Tutkimusartikkeli Nature Communications -julkaisussa: Detection of ferrihydrite in Martian red dust records ancient cold and wet conditions on Mars

Juttu perustuu Euroopan avaruusjärjestön tiedotteeseen.

Suomi mukaan Artemis -sopimuksiin

Nasan apulaisjohtaja Jim Freen videotervehdys
Nasan apulaisjohtaja Jim Freen videotervehdys

Suomi on liittynyt tänään mukaan Yhdysvaltain ja Nasan Artemis-sopimuksiin, jotka luovat kansainvälisen, monenkeskisen kehyksen yhteistyölle Kuun, Marsin ja muiden taivaankappaleiden tutkimuksessa. Samalla Suomi liittyi mukaan Euroopan avaruusjärjestön Zero Debris -aloitteeseen ja esitteli myös uuden avaruusstrategian.

Espoon Otaniemessä on meneillään suomalaisen avaruusalan tämän vuoden kohokohta: Aalto-yliopiston organisoima Winter Satellite Workshop

Pienestä opiskelijoiden työpajasta alkanut tapahtuma on paisunut Pohjois-Euroopan suurimmaksi avaruusalan vuosittaiseksi kokoontumiseksi. Mukana on yli tuhat osallistujaa ympäri maailman.

Ensimmäisen kokouspäivän täyttivät institutionaaliset esitykset ja tapahtumat.

Tänä vuonna tulee kuluneeksi 30 vuotta siitä, kun Suomi liittyi mukaan Euroopan avaruusjärjestöön täysjäsenenä. Sitä ennen Suomi oli vähän aikaa liitännäisjäsenenä ja yhteistyö oli alkanut jo hieman aikaisemmin. 

Itse Euroopan avaruusjärjestö juhlii tänä vuonna 50-vuotista olemassaoloaan. Euroopan kantorakettikehitysjärjestö ELDO ja Euroopan avaruustutkimusjärjestö ESRO yhdistettiin Euroopan avaruusjärjestöksi vuonna 1975.

Tilaisuudessa julkistettiin kirjanen, missä muistellaan Suomen taivalta avaruuteen. Sähköisen julkaisun Suomi ESAn jäsen 30 vuotta, kolme vuosikymmentä yhteistyötä ja menestystarinoita lukea ja ladata itselleen täältä.

Suomen avaruustoimintaa koordinoivan Työ- ja elinkeinoministeriön Tero Vihavainen esitteli Otaniemessä myös Suomen uuden avaruusstrategian, joka määrittelee Suomen avaruustoiminnan vision ja päämäärät vuoteen 2030. 

Avaruusstrategian pääpilarit

Uuden strategian pääpilarit Tero Vihavaisen esityksen kalvolla. Strategiassa on paljon kauniita sanoja ja hyvät päämäärät, mutta se kaipaa konkretiaa. Strategia on saatavilla suomeksi, ruotsiksi ja englanniksi.

 

Strategian keskeisiä tavoitteita ovat "avaruuspalveluiden hyödyntäminen yhteiskunnan eri sektoreilla, avaruustoimintaympäristön kehittäminen, toimintakyvyn vahvistaminen ja kansainvälisen yhteistyön lisääminen". 

Se korostaa avaruustalouden merkitystä, turvallisuus- ja puolustuspoliittisia näkökulmia sekä huoltovarmuuden tärkeyttä.

Artemis-sopimukset

Kansainvälisesti kiinnostavin osa tiistain ohjelmaa oli kuitenkin Suomen liittyminen Yhdysvaltain johtamaan Artemis-sopimuksiin. Suomesta tuli 53. sopimuksiin mukaan tullut maa.

Kyseessä on joukko sitoumuksettomia monenvälisiä sopimuksia Yhdysvaltain hallituksen ja muiden maiden hallitusten välillä, jotka perustuvat YK:n vuonna 1967 tehtyyn ns. ulkoavaruussopimukseen, mutta laajentavat ja tarkentavat sitä.

Ne kehystävät yhteistyötä Kuun, Marsin ja muiden avaruudessa olevien taivaankappaleiden siviili- ja rauhanomaisessa tutkimuksessa.

Sopimuksilla on suora poliittinen yhteys Yhdysvaltain ja Nasan Artemis-kuuohjelmaan. Koska myös Kiina ja Venäjä keräävät myös maita tukemaan omia intressejään, tarkoittaa sopimuksiin mukaan meneminen myös selvästi sitä, että Suomi on valinnut puolensa poliittisesti.

Asettuminen Yhdysvaltain rinnalle on luonnollinen jatko viimeaikaiselle kehitykselle. 

Ministeri Ville Rydman ja asianhoitaja Jim Free

Allekirjoittajina olivat Työ- ja elinkeinoministeri Ville Rydman ja Yhdysvaltain asianhoitaja Christopher Krafft. Nasan apulaisjohtaja Jim Free lähetti videotervehdyksen, mistä on jutun otsikkokuva.

 

Yhdysvaltain tuore hallintomuutos voi tuoda sopimuksiin lisäväriä, etenkin jos presidentti Trump tulee muokkaamaan voimakkaasti nykyistä Artemis-kuuohjelmaa. Laajempaan kehykseen tämä ei kuitenkaan vaikuttane, vaikka osuu kipeästi paljon tekniikkaa Artemikseen toimittaneeseen ja hankkeeseen muutenkin panostaneeseen Euroopan avaruusjärjestöön.

Ensimmäiset Artemis-sopimukset allekirjoitettiin 13. lokakuuta 2020, jolloin mukana olivat Australia, Kanada, Italia, Japani, Luxemburg, Yhdistyneet Arabiemiirikunnat, Yhdistynyt kuningaskunta ja Yhdysvallat. 

Artemis-sopimukset allekirjoittaneiden maiden liput

Ei roskaa!

Myös Euroopan avaruusjärjestö etsii kumppaneita, mutta hieman eri kulmalla. ESAn Zero Debris -julkilausuma, jonka mukaan avaruuden käytön tulisi olla täysin roskaamatonta vuoteen 2030 mennessä.

Valtioiden lisäksi ESA kutsuu mukaan yhtiöitä, tutkimuslaitoksia ja muita avaruutta käyttäviä tahoja, jotka sitoutuvat pyrkimään avaruuden roskaamisen vähentämiseen.

Ministeri Rydman allekirjoitti lausuman Suomen puolesta, ja lisäksi kuusi suomalaista avaruusalan toimijaa sitoutui myös toimimaan julkilausuman mukaisesti.

Big Space-suited inflatable astronaut near the front door at Dipole

Suuri, puhallettava astronautti toivottaa Dipolin avaruuskokouksen osallistujia tervetulleeksi torstaihin iltaan saakka. Kokouksesta tulee vielä lisää juttuja sekä video Tiedetuubiin.

Yllätysten joulukalenteri: Sateenkaaren värit Markus Hotakainen To, 19/12/2024 - 08:23
Sateenkaaren värit. Kuva: MH
Sateenkaaren värit. Kuva: MH
Sateenkaaren synty. Kuva: MH

Talvella ei kovin usein sateenkaaria näy, mutta puolen vuoden kuluttua tilanne on toinen. Sateisena kesäpäivänä pilvien jo hiljalleen hajaantuessa taivaalle voi leimahtaa upea värien kirjo.

Sateenkaari näkyy aina vastakkaisella puolella taivasta kuin aurinko, koska valo heijastuu sadepisaroista takaisin jokseenkin samaan suuntaan kuin se on tullut. Valon heijastuminen vesipisaroista ei vielä riitä selittämään sateenkaaren värejä, siihen vaaditaan myös valon taittumista.

Kun auringonvalo taittuu ja heijastuu vesipisaroissa, valkoiselta näyttävä auringonvalo hajoaa – kirjaimellisesti – sateenkaaren väreihin. Niitä on seitsemän: punainen, oranssi, keltainen, vihreä, sininen, indigo ja violetti. Värit ovat sitä hehkuvampia ja kirkkaampia, mitä suurempia pilvistä tipahtelevat vesipisarat ovat.

Kun auringonvalo kulkee sadepisaran pinnan läpi, valon kulkusuunta muuttuu, koska se siirtyy harvemmasta aineesta eli ilmasta tiheämpään eli veteen.

Valo heijastuu pisaran sisäpinnasta ja kun se poistuu vesipisarasta, sen kulkusuunta muuttuu jälleen: nyt se siirtyy tiheämmästä aineesta harvempaan eli vedestä ilmaan.

Kahden taittumisen ja yhden heijastumisen seurauksena valon kulkusuunta muuttuu 42 astetta. Siksi sateenkaari näkyy taivaalla vastapäätä aurinkoa ja kaartuu katsojan pään varjon ympärille 42 asteen etäisyydellä.
 

Sateenkaaren synty. Kuva: MH

Valon kulkusuunta ei kuitenkaan muutu täsmälleen 42 astetta, sillä valon eri aallonpituudet eli värit taittuvat eri tavoin: punainen taittuu vähiten ja violetti eniten. Siksi punainen väri on sateenkaaren ulkoreunassa ja violetti sen sisäreunassa.

Ne ovat sateenkaaressa aina samassa järjestyksessä, sillä kullakin värillä on oma aallonpituutensa – tai tarkemmin sanottuna aallonpituusalueensa – ja se taittuu tietyllä tavalla. 

Värit ovat samassa, mutta päinvastaisessa järjestyksessä myös toisinaan näkyvässä sivusateenkaaressa, joka kaartuu pääsateenkaaren ulkopuolella. Kun pääsateenkaaressa punainen on uloin ja violetti sisin väri, sivusateenkaaressa uloimpana on violetti ja sisimpänä punainen.  

Päinvastainen järjestys johtuu siitä, että sivusateenkaaren synnyttävä valo heijastuu vesipisaroiden sisällä yhden sijasta kahteen kertaan. Sivusateenkaari on himmeämpi juuri siksi: jokaisessa heijastumisessa valoa menee hivenen haaskoon.

Toinen heijastus pisaran sisällä vaikuttaa myös kaaren kokoon. Valon kulkusuunta muuttuu kahden taittumisen ja kahden heijastumisen tuloksena noin 51 astetta. Siksi sivusateenkaari kaartuu katsojan pään varjon ympärillä 51 asteen etäisyydellä, joten sivusateenkaari on aina pääsateenkaaren ulkopuolella.

Tähdistöt: Orion

Orionin tähdistö. Karttapiirros: Markus Hotakainen
Orionin tähdistö. Karttapiirros: Markus Hotakainen

Otavan jälkeen todennäköisesti tunnetuin tähtikuvio on Orion. Se toimiikin oivallisena siirtymänä syystalven tähtitaivaasta talvisiin näkymiin.

Orion, jättiläismetsästäjä ja soturi, oli komeimmista komein ja myös tiesi sen. Rangaistukseksi ylvästelystään jumalat lähettivät skorpionin pistämään häntä kuolettavasti jalkaan. Kumpainenkin päätyi taivaalle tähtikuvioksi, mutta Orionin rakastetun, jumalatar Dianan pyynnöstä siten, että Orion pääsee pakenemaan läntisen taivaanrannan taakse, kun Skorpioni nousee idästä.

Tiimalasia muistuttava Orionin hahmo komeilee talvisella iltataivaalla pystyasennossa suoraan etelässä. Jättiläismetsästäjän ”olkapäällä” on α Orionis, punainen Betelgeuze, joka on satoja kertoja Aurinkoa suurempi jättiläistähti. Betelgeuze on elämänsä ehtoopuolella oleva tähti. Se on kuluttanut ydinpolttoaineensa lähes loppuun ja voi räjähtää milloin tahansa supernovana.

Orionin toisena ”jalkana” on hieman pienempi jättiläistähti Rigel. Vaikka Rigel on tähdistön β-tähti, se on todellisuudessa kirkkaampi kuin α-tähti. Rigel on puolestaan väriltään sinertävänvalkoinen. Sekä Betelgeuze että Rigel ovat niin kirkkaita, että niiden värit erottuvat selvästi paljain silmin.

Keskellä Orionin kuviota on kolmen tähden muodostama Orionin vyö, joka osoittaa vasemmalle alaviistoon lähes suoraan naapuritähdistön, Ison koiran, kirkkaimpaan tähteen Siriukseen. Vyöstä roikkuu Orionin miekka, niin ikään kolmen hieman himmeämmän tähden muodostama jono. Orionin miekan ja vyön muodostamaa kuviota sanotaan suomalaisittain Väinämöisen viikatteeksi, jota se melkoisesti muistuttaakin.

Jo kiikarilla näkyy selvästi, että miekan keskimmäinen ”tähti” onkin jotain aivan muuta: se on tähtienvälinen kaasupilvi, jossa syntyy kaiken aikaa uusia tähtiä kaasusta tiivistymällä. Orionin suuri kaasusumu eli Messier 42 on ainoa Suomen leveysasteilta helposti havaittava kaasusumu.

Kaukoputkella sumun keskellä erottuu neljän vastikään syntyneen tähden muodostama joukko, Trapetsi, ja sumun sisällä on infrapunakaukoputkilla havaittu syntymässä olevia tähtiä. M42 ja sen vieressä oleva himmeämpi M43 ovat näkyvimmät osat valtavasta tähtienvälisestä vetykaasupilvestä, joka kattaa suuren osan Orionin tähdistön alueesta. Kaasusumun vety hohtaa punaista väriä, joka ei kuitenkaan erotu kuin kaukoputkilla otetuissa kuvissa.

Sateenkaaren seitsemän väriä

Sateenkaaren värit
Sateenkaaren värit

Jos Aurinko sattuu sopivasti paistamaan pilvestä lankeavaan vesisateeseen, taivaalle syttyy kirkasvärinen sateenkaari.

Päivän kuvaVärejä sateenkaaressa on seitsemän – paitsi jos on samaa mieltä kuin tieteiskirjailija Isaac Asimov, jonka mukaan "indigo ei ole koskaan tuntunut olevan sen väärti, että se ansaitsisi tulla pidetyksi omana värinään".

Punainen, oranssi, keltainen, vihreä, sininen, indigonsininen ja violetti ovat sateenkaaressa aina samassa järjestyksessä, sillä ne ovat seurausta auringonvalon heijastumisesta ja nimenomaan taittumisesta vesipisaroissa. Kullakin värillä on oma aallonpituutensa – tai tarkemmin sanottuna aallonpituusalueensa – ja se taittuu tietyllä tavalla. 

Värit ovat samassa, mutta päinvastaisessa järjestyksessä myös toisinaan näkyvässä himmeämmässä sivusateenkaaressa, joka kaartuu pääsateenkaaren ulkopuolella. Kun pääsateenkaaressa punainen on uloin ja violetti sisin väri, sivusateenkaaressa uloimpana on violetti ja sisimpänä punainen.  

Syynä päinvastaisuuteen on, että sivusateenkaaren synnyttävä valo heijastuu vesipisaroiden sisällä kahteen kertaan, kun pääsateenkaaren aikaansaava valo heijastuu vain kerran.

Kuva: Tiedetuubi